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I. Introduction
Computer-assisted learning (CAL), online courses, massive open online courses,
and other forms of educational technology (EdTech) are revolutionizing the
way in which students are educated. Billions of dollars are spent each year in
the United States on software for K-12 students, and the global EdTech indus-
try is projected to grow to more than US$340 billion by 2025 (Escueta et al.
2017). With the large-scale, comprehensive movement of schoolchildren and
college students in most other countries around the world to online platforms
in response to the coronavirus outbreak (COVID-19), actual expenditures on
EdTech will be substantially higher. The scale of the substitution of EdTech for
classroom learning is remarkable: more than 1.5 billion schoolchildren around
the world have moved to online learning because of social-distancing restric-
tions (UNESCO 2020). The phased return to classroom-based teaching will
take time, and it is likely that the pandemic accelerated the longer-term shift
from in-person learning to online learning,
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academic outcomes is mixed (Glewwe et al. 2013; Bulman and Fairlie 2016;
Escueta et al. 2017)." The effects are often identified through randomized ex-
periments in which the treatment group that receives supplemental CAL is
compared with a control group that receives no inputs. Although usually attrib-
uted to the EdTech component, the estimated effects of the supplemental use
of CAL, however, include other non-technology-based inputs. These inputs
include more time learning academic material, additional instructional support
by facilitators, more attention to students, and potential crowd-out effects on
homework time. Thus, a fundamental question for making decisions over in-
vestments of educational resources is whether the “Tech” in EdTech is driving
the supplemental program effects or whether another input is driving the ef-
fects. This represents a more general problem in evaluating and interpreting the
effects of any supplemental education intervention program (e.g., after-school tu-
toring and community technology centers) because these programs also consist of
additional inputs such as more time on learning.

In this paper, we clarify and discuss the channels by which supplemental
CAL may affect academic outcomes among schoolchildren, and we then pre-
sent estimates that clarify the channels by which CAL affects those outcomes. A
theoretical model that lays out these channels more formally is presented in ap-
pendix A. The technology-based components of CAL include engaging video-
and game-based material, rapid feedback on problems through provision of
assistance or answers, adjustment of the difficulty of problems for each student,
and input through a keyboard instead of writing.” To generate exogenous varia-
tion in CAL and other inputs, we design and conduct a randomized controlled
trial (RCT) involving more than 4,000 fourth-to-sixth-grade students across

! Recent evaluations of supplemental learning CAL programs across a wide range of software types
find large positive effects on academic outcomes (e.g., Banerjee et al. 2007; Lai et al. 2013, 2015;
Bohmer 2014; Mo et al. 2014). For the less common use of CAL as a direct substitute for regular
teacher instruction in the classroom, the evidence tends to show null effects (Dynarski et al. 2007
Linden 2008; Barrow, Markman, and Rouse 2009; Campuzano etal. 2009; Carrillo, Onofa, and Ponce
2011), but this might depend on how computers are used (Falck, Mang, and Woessmann 2018) or what
levels of CAL are being used (Bettinger et al. 2023). Finally, the less structured provision of computers
and laptops for home and/or school use among schoolchildren tends to show null or mixed effects (e.g.,
Fuchs and Woessmann 2004; Schmitt and Wadsworth 2006; Machin, McNally, and Silva 2007; Fiorini
2010; Malamud and Pop-Eleches 2011; Fairlie and London 2012; Fairlie and Robinson 2013;
Beuermann et al. 2015; Cristia et al. 2017; Hull and Duch 2019; Malamud et al. 2019).

% Understanding the role of various inputs in improving student learning outcomes is especially im-
portant in many developing countries where students have low and stagnant learning outcomes (see
Muralidharan and Zieleniak 2013; Pritchett 2013).

3 See the reviews in Glewwe et al. (2013), Bulman and Fairlie (2016), and Escueta et al. (2017), as
well as Ebner and Holzinger (2007), Burguillo (2010), Van der Kleij et al. (2015), Vincent (2016),
Van Klaveren, Vonk, and Cornelisz (2017), and Muralidharan, Singh, and Ganimian (2019) for
more discussion.
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352 math classes in 130 schools in rural China.* The RCT includes three treat-
ment arms: (i) supplemental CAL, (ii) traditional supplemental learning (i.e.,
solving problems by use of pencils and paper workbooks), and (iii) a pure control
that receives no program intervention. The traditional supplemental learning ses-
sions were designed to have identical content and duration as the supplemental
CAL sessions so that they could be used to isolate the technology effects of CAL
from the overall program eftects and used to test whether CAL can substitute for
traditional learning. The workbooks, however, do not replicate “tech” compo-
nents such as engaging video- and game-based material, rapid feedback on
problems through provision of assistance or answers, and input through a key-
board instead of writing. To further isolate effects, the RCT was also designed
so that the CAL treatment does not provide any additional inputs and is not part
of a larger program intervention.

There are multiple channels by which a supplemental CAL program can af-
fect educational outcomes, but there is no theoretical prediction on whether
the isolated technology component of the program improves or worsens edu-
cational outcomes. Estimates from the field experiment indicate that, for the
average student, the supplemental CAL program has no effect on students’
math test scores. When we isolate the technology-based effects of CAL, we also
do not find evidence of positive effects on test scores. Given well-documented
gender differences in computer use, benefits, and achievement, we examine ef-
fects for boys and girls separately.” Focusing on boys, we find that the CAL pro-
gram increases math test scores by 0.100. Isolating the technology effects from
CAL, however, the point estimates for the CAL technology effect are smaller
and lose statistical significance. For gitls, we do not find positive estimates of
the CAL program effect or the isolated CAL technology effect on test scores.

Following previous studies, we also examine CAL program and technology
effects on class grades and find that, for the average student, the supplemental
CAL program increases students’ math grades.® However, when we isolate the
technology-based effects of CAL, we find point estimates that are small and statis-
tically indistinguishable from zero. On the other hand, the differential between the

4 Of the 185 million schoolchildren in China, roughly 75% live in rural areas (Chen, Yang, and Ren
2015). Technology might have long-term benefits for rural children in China and help close some of
the urban/rural achievement gap. Bianchi, Lu, and Song (2020) find, e.g., that an earlier large-scale
program that connected urban teachers to rural schoolchildren using satellite internet and physical
CDs improved academic achievement and labor market outcomes.

> See Hannum and Park (2007), Xu and Jaggers (2014), Algan and Fortin (2018), Xu and Li (2018),
and Eble and Hu (2019).

¢ Por a few examples, see Malamud and Pop-Eleches (2011), Fairlie and London (2012), Fairlie and
Robinson (2013), and Bergman (2021).
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estimated overall CAL program effect and the estimated CAL-technology-specific
effect is positive and statistically significant. For boys, we find that the CAL
program increases math grades by 3.4 percentile points, but the point estimates
for the CAL technology effect are notably smaller and statistically indistinguish-
able from zero. We do not find positive estimates of the CAL program effect or
the isolated CAL technology effect on math grades for girls.

Turning to other measures, we find no evidence of time substitution effects
from the CAL and workbook sessions: neither type of session crowds out home-
work time in math. On the other hand, the CAL program and the isolated CAL
technology effect both increase how much students like their math class.

In addition to contributing to the literature on whether and how CAL pro-
grams work, the findings from our experiment provide novel evidence on
whether the isolated technology component of CAL improves academic out-
comes. Our experiment provides the first estimate in the literature directly
identifying the technology-based effects of CAL on educational outcomes. It
is the first experiment to use a second comparison group to remove additional
inputs such as more time learning, instructional support from teachers and
aides in the sessions, more attention to students, and crowding out of home-
work time. Isolating the technology-based effects is fundamental to under-
standing how CAL works and whether the “Tech” in EdTech positively affects
educational outcomes. The experimental design also provides new evidence
on the substitutability of CAL for traditional learning, which has implications for
the full-scale substitution of technology that may sometimes occur (e.g., during
the COVID-19 pandemic).

Our paper builds on three previous studies that explore technology-specific
effects.” In one recent study, Muralidharan, Singh, and Ganimian (2019) find
large positive effects of after-school Mindspark Center programs in India, which
include both extensive software use and instructional support. To separate out
the effects of the instructional support and extra learning time inputs of the
program, they compare their effect estimates with those of an after-school pri-
vate tutoring program that did not include a technology component but was
conducted in the same location and student age group, and for more time
(Berry and Mukherjee 2016). The comparison program has no effects on student
outcomes, suggesting that additional instructional time and tutoring were not the

7 The general finding of null effects when CAL substitutes for regular teacher instruction in the class-
room provides some indirect evidence on the question (Dynarski et al. 2007; Linden 2008; Barrow,
Markman, and Rouse 2009; Campuzano et al. 2009; Carrillo, Onofa, and Ponce 2011). However,
the implementation of these programs within the classroom and the substitution for several factors
(not just learning time) such as teacher lecture time, in-class discussions, and small-group work make
it difficult to isolate the technology-related effects of CAL.
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key drivers of the Mindspark effects. A second recent study evaluates a pilot pro-
gram that involves the training of teaching assistants (TAs) to deliver a structured
package of literacy materials to groups of three to four young children in England
(Johnson et al. 2019). Cross-randomizing the TA teaching with information and
communication technology (ICT) or paper equivalent sessions, they find positive
effects for both (slightly larger for non-ICT). The emphasis of the experiment on
evaluating the TA intervention, small group assignment, and implementation
of this program in the classroom, however, make it more difficult to isolate the
technology-based effects of the ICT session. In a third recent study, Biichel et al.
(2022) conduct an effect evaluation on a broader education program in El Sal-
vador that includes after-school Khan Academy lessons with teachers, Khan
Academy lessons with nonteacher supervisors, lessons with teachers that repeat
the curriculum, and a control group (grades 3—6). Although there were prob-
lems with high absentee rates of both students and teachers and lack of prepa-
ration among teachers, the experiment provides evidence that Khan Academy
lessons had positive effects on learning of math relative to traditional lessons
by teachers.

Our paper also contributes to the broader literature on the effects of com-
puter technology in education and the labor market by providing a new “Pencil
Test.” The seminal paper by DiNardo and Pischke (1997) found that workers
who use pencils at work experience a wage premium similar to that of computer
users. “Pencil skills” are not scarce, however, and cannot have a large return in
the labor market, raising the concern that the large estimated returns to com-
puter skills in previous studies were due to unobserved worker and job charac-
teristics. Several recent studies evaluating CAL programs rule out concerns
about unobserved heterogeneity among students, parents, and schools by using
RCTs but ignore a related threat to interpretation—the careful choice of the
control condition. By comparing CAL with pencil and paper-workbook esti-
mates directly, we provide cautionary evidence that the large positive estimates
of the effects of CAL programs commonly found in previous studies might be
at least partly due to other inputs (such as more time devoted to learning ma-
terial), which could have also been achieved with a pencil and a paper work-
book. Taken together, the findings have particular relevance to the questions
whether technology has a distinct advantage in improving student outcomes,
and what advantages and disadvantages it has over traditional “pencil-and-
paper” forms of learning.

Finally, the findings contribute to a rapidly growing literature on the effects
of school closures on schoolchildren during the pandemic (e.g., Azevedo et al.
2020; Maldonado and De Witte 2020; Clark et al. 2021; Grewenig et al.
2021; Angrist, Bergman, and Matsheng 2022; Li et al. 2023). The findings shed
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light on whether the extensive substitution of online learning for traditional
learning due to COVID-19 is likely to have net negative effects on academic
outcomes among schoolchildren. Our finding that EdTech and workbook exer-
cise sessions of equal time and content outside of school hours had the same effect
on standardized math test scores and grades in math classes suggests that EdTech
might provide at least some substitution for traditional learning.

The remainder of the paper is organized as follows. In section II, we discuss
the channels by which CAL might affect academic outcomes among school-
children relative to traditional “pencil-and-paper” forms of learning. This sec-
tion also describes the design and implementation of the experiment. We pre-
sent our empirical results in section III, and we conclude in section IV.

Il. Estimation, Experimental Design, and Data

A broad question of interest is whether parents, students, and schools are
choosing optimal levels of technology inputs for education given constraints
on financial resources, information, and in-school and after-school time allo-
cated to learning. Can academic achievement be improved by investing in ad-
ditional technology use? The answer to this question necessarily involves a
trade-off between inputs. Investment in technology likely offsets investment
in traditional resources. During after-school hours, the question whether time
spent using computer-based learning offsets traditional learning is especially sa-
lient because of the flexibility of this time.

As presented in appendix A, we create a theoretical model to illustrate the
channels by which CAL might affect academic outcomes among school-
children. In brief, the model starts by adding computer resources such as CAL
to a standard model of education production with the binding constraints being
the amount of after-school time available for learning and the budget for parental
or school resources for after-school learning. The focus of the model is on how
CAL investment affects various math time inputs, but we also discuss the theoret-
ical implications of how CAL programs, more generally, might provide additional
instructional support by teachers or aides and more attention to students during
sessions. The model formalizes an important, and intuitively plausible, insight that
the total (marginal) effect of CAL on academic achievement is composed of a di-
rect effect of increasing CAL time on math and an indirect effect through increas-
ing total time spent learning math. The distinction is important and guides the
design of our field experiment and estimating equations.

A. Direct and Indirect Effects
CAL might have a direct or “technology” effect on academic achievement in-
dependent of more time on math. CAL is video based, and often game based,
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and thus might be more engaging than traditional learning. The game-based
features of educational software might increase learning interest as well as learn-
ing performance (Ebner and Holzinger 2007; Burguillo 2010). CAL might
also provide faster feedback on problems compared with the feedback associ-
ated with traditional modes of learning (Van der Kleij, Feskens, and Eggen
2015). Another “technology” aspect of CAL that could be important is that
it can be adaptive or personalized for students. The adaptive component might
be especially advantageous when students are below grade level and have widely
differing levels of preparation (Muralidharan, Singh, and Ganimian 2019). In
countries where student preparation is stronger, more regimented, and more
homogeneous, however, adaptive CAL might not work better than regular
CAL (Van Klaveren, Vonk, and Cornelisz 2017).

On the other hand, the game-based nature of CAL might reduce interest in
completing traditional homework or learning in class and hence decrease
achievement. In addition, solving math problems on a computer instead of
writing them down on paper with a pencil could commit them less to memory
(Vincent 2016). The net technology effect of these potentially offsetting mech-
anisms is theoretically ambiguous.

Turning to the indirect effect, we can view this effect as having two parts.
The first part is the effect of a one-to-one increase in math time by increasing
CAL time. As discussed in detail below, this part of the effect of introducing
educational technology is important and often overlooked in previous litera-
ture. Introducing CAL in a subject implicitly increases time spent learning that
subject. The second part of the indirect effect of CAL captures the possibility of
crowd out (or crowd in) of traditional learning in math. CAL might displace
some of the time a student normally devotes to traditional forms of learning
such as homework or independent study because of the overall time constraint.
Crowd out of homework time might result because of the time constraint and/
or the student viewing traditional learning as less fun or engaging compared
with learning math on the computer (which is often game based). Working
in the opposite direction, however, there could be crowd in where CAL might
increase a student’s interest and confidence in math and ultimately increase in-
dependent time studying math.

Arguably, the component of most interest is the direct or technology-based
effect of CAL on academic performance.® It captures how CAL affects achieve-
ment stripped of any mechanical effects through increased hours learning math
or any crowd-out or crowd-in effects on traditional forms of learning math. Pol-
icymakers, however, might not be as concerned about removing crowd-out or

8 In the theoretical model presented in app. A, the direct or technology-based effect of CAL is § in
eq. (A3).
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crowd-in effects but want to know the net reduced-form effect that captures the
relative returns to different investments in math learning. In this case, the bud-
get constraint and relative prices would also play an important role. The crowd-
out or crowd-in component is also of interest because it provides a sense of the
behavioral response to different technology-investment policies, for example, a
better understanding of whether investing in CAL, which makes traditional
forms of learning less interesting (crowd out) or builds confidence (crowd in),
is useful.

The total effect of implementing a CAL program captures everything: time
learning math on the computer, total time learning math, and potential crowd-
out effects on homework. Although the focus here has been on time effects, as
discussed in more detail below, implementation of a CAL program often in-
cludes additional inputs such as provision of new learning material outside
the standard curriculum, additional instructional support by teachers or aides
running the sessions, and more attention to schoolchildren in sessions.

A few recent studies estimate the effects of supplemental CAL on academic
outcomes and find large positive effects. For example, Lai et al. (2013, 2015)
and Mo et al. (2014) find large positive effects of supplemental CAL programs
for Chinese schoolchildren (0.120 to 0.180 in math) from 40 minutes of
instruction two times a week. Muralidharan, Singh, and Ganimian (2019) find
large positive intent-to-treat effects of after-school Mindspark Center programs
in India, which include software use and instructional support (0.37¢ in math
and 0.230 in Hindji) from six 90-minute sessions a week. Bohmer (2014) finds
large positive effects from an after-school program providing CAL and student
coaches in South Africa (0.250 in math) over the course of a year. These studies
essentially estimate the total effect without identifying the technology compo-
nent.” Because this equation includes the total effects from an increase in time
on math in addition to an increase in time on the computer, it might favor find-
ing positive effects on academic outcomes. Outside of the model, many of the
CAL programs evaluated in previous literature include additional educational
inputs such as coaches and tutoring sessions, which further complicate the inter-
pretation of CAL effects on academic outcomes. To investigate this issue, we di-
rectly estimate the technology component using our experiment. Specifically, we
make use of two treatment arms and a control group to isolate the effects of the
different inputs.

?In the theoretical model presented in app. A, the total effect of implementing a CAL program is
captured by (A3'), the technology parameter is 6, time on math is 7™, and time on the computer
is 7C.
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B. Estimation

Estimating the relationships discussed above is complicated for two primary
reasons. First, academic performance and CAL use are likely to be correlated
with unobservables leading to biased estimates, especially if there is positive se-
lection bias. Second, the multicollinearity of total math time and CAL time
makes it difficult to identify the separate effects of math time and CAL time
on academic performance. To address both concerns, we designed and imple-
mented a field experiment in which students are randomly assigned to either a
control group, a treatment group that receives supplemental CAL sessions, ora
treatment group that receives supplemental traditional workbook sessions. As
discussed in more detail below, the supplemental traditional workbook sessions
were designed to provide similar content, time learning math, and other char-
acteristics as the CAL sessions. Production of math achievement in the control,
CAL treatment, and workbook treatment groups can be represented, respec-

tively, by
A = BX; + S, + AT, (1)
AN =BX S+ 0+ NT A+ 1+ 9%, )
AT = BX + S+ NT + 1+ ™), 3)

where 7;"*- is the base or control level of traditional homework time, and 7
and n™* are the potential crowd-out (or crowd-in) responses of math home-
work time to CAL and workbook sessions, respectively. To normalize time
units and simplify the notation, the CAL treatment sets 7;° = 1 and the extra
time allocated to learning math to 1. The workbook treatment, which is of the
same duration of time, also sets the extra time allocated to learning math to 1.

The parameters of these three equations can be recovered by using adjusted
means and the following two equations:

0 = ;ICAL _ AWK _ )\(nc _ nWK)’ (4)
AVK g0
A= W, (5)

where n° — 7%*can be estimated from the difference in total hours learning
math between the CAL treatment group and the workbook treatment group,
n“ can be estimated from the difference in total hours learning math between
the CAL treatment group and the control group, and 9™ can be estimated
from the difference in total hours learning math between the workbook treat-
ment group and the control group. If these hours substitution effects are small,



1932 ECONOMIC DEVELOPMENT AND CULTURAL CHANGE

then we are essentially identifying 6 from the CAL-workbook difference and N
from the workbook-control difference. Student, teacher, and school character-
istics and the base or control level of traditional learning time on math, 7;"*-°,
are balanced in expectations because of the RCT.

We estimate these parameters (which are also discussed in app. A) represented
in equations (1)—(3) using the following regression:

Y, = a +a(=Dy) + a(=Dy) +X;8+ Sy + 7. +&, (6

where Y;is the academic outcome of interest measured at end line for student 7 in
school j, D,; is a dummy variable indicating the treatment assignment for the
control condition of class j, D,; is a dummy variable indicating the class treat-
ment assignment for the workbook condition of class j; Xj; is a vector of baseline
student control variables, S, is a vector of baseline teacher and classroom control
variables, and 7. is a set of county-grade (strata) fixed effects. Both the control
and workbook dummy variables are entered with negative signs to capture rel-
ative differences with the CAL treatment (which is the left-out condition in the
equation). In this case, o, captures the CAL-control difference, which is the
overall program effect or the “CAL program” effect, and c, captures the CAL-
workbook difference, which is the isolated technology-based effect of CAL or
the “CAL technology” effect. In all specifications, X;; includes the baseline value
of the dependent variable (when available). We also estimate treatment effects
with an expanded set of baseline controls including student age, gender, whether
each parent finished junior high school or not, teacher gender, teacher experi-
ence, whether the teacher attended college, number of boarding students in
the class, and total class size. In all regressions, we adjust standard errors for clus-
tering at the class level.

C. Experimental Design
We designed the field experiment to generate exogenous variation in both sup-
plemental CAL as well as supplemental traditional learning with the purpose
of estimating the parameters discussed in appendix A. The field experiment
involves more than 4,000 fourth-to-sixth-grade students across 352 school-
grades (with one math class per school-grade) in 130 schools in rural China.
The RCT includes three treatment arms: a supplemental CAL arm, a supple-
mental traditional learning (pencil and paper workbook) arm, and a pure control
arm. The supplemental learning offered by the first two treatment arms is iden-
tical in terms of content and duration.

The experiment was conducted among rural primary schools in Northwest
China (Shaanxi Province). Specifically, 130 schools from 9 impoverished coun-
ties were sampled to participate in the experiment. In each school, we randomly
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sampled one fourth-grade class, one fifth-grade class, and one sixth-grade class
that each had at least four boarding students. This resulted in a total of 352 clas-
ses or school-grades (instead of 130 schools x 3 grades = 390 school-grades). All
students in the sampled classes were surveyed, but the experimental sample in-
cludes only boarding students. Altogether, we sampled and surveyed 4,024
boarding students and their 352 math class teachers.

The experiment took place in four stages. First, in October 2017 (near the
start of the school year), we conducted a baseline survey of students, teachers,
and principals. Second, after we collected the baseline data, we randomized the
352 classes into the three different treatment conditions. Third, we began
conducting the interventions with students in the treated classes in the first half
of November 2017. Fourth, in June 2018 (at the end of the school year), we
returned to the same classes to conduct a follow-up (or end-line) survey.

Regarding external validity, we focused on boarding students because there
was no time at which to provide after-school CAL and workbook sessions to non-
boarding students. Boarding students represent 37% of students in our schools.
We find that boarding and nonboarding students are similar across numerous
characteristics (results are available by request).'” Although these students do
not appear to be substantially different across observable characteristics, we have
to be cautious in generalizing our results to the broader population of students
in China."" Boarding students and their families face different constraints than
those face by nonboarding students. But, boarding students are interesting in
their own right. There are 32 million primary and junior high boarding stu-
dents in China, which represents 32% of all students (Ministry of Education
2017). We also focus on China, which even in rural areas tends to have relatively
good access to and familiarity with computers and internet compared with
poorer parts of the world. On one hand, improved access and familiarity could
accentuate the positive effects of EdTech, but on the other hand, they could
limit the novelty and excitement of use of EdTech by schoolchildren.

D. Baseline Survey
The baseline survey collected information on students, teachers, and school prin-
cipals. The student survey collected information about student and household

1% The summary statistics reported in table A1 pertain to the experimental sample (boarding students
only). In regard to line 1 of panel A, the larger sample of students (boarding and nonboarding) was
used to standardize baseline math scores; as baseline math score averages and SD are close to 0 and 1,
respectively, this indicates the distributions of math scores for boarding students and nonboarding
students are quite similar.

' Boarding students are similarly likely to be girls, are slightly younger, like math slightly less at base-
line, and have slightly less educated parents.
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characteristics (age, gender, father completed junior high school [yes/no], mother
completed junior high school [yes/no], the degree to which they liked math
class). Students also took a 35-minute standardized exam in math. The teacher
survey collected information on teacher gender, experience, and college atten-
dance. Finally, we collected data on the number of boarding students in the class
and class size.

E. Randomization

We designated each of 27 county-grades (9 counties and 3 grades) in our sam-
ple of 130 schools and 352 classes (or school-grades) as strata or blocks. We
then randomly allocated classes within these strata to one of three different treat-
ment conditions (T'1 = supplemental CAL, T2 = supplemental workbook, or
C = control). As a result of the randomization, 116 classes in 88 of the schools
were assigned to supplemental CAL (T'1), 118 classes in 86 of the schools were
assigned to supplemental workbook (T2), and 118 classes in 85 of the schools
were assigned to the control group.'?

To ensure adequate sample sizes, power calculations were conducted before
the beginning of the trial (Spybrook et al. 2009)."* We expected to lose a small
amount of statistical power because of student attrition. On the basis of our
experience, we assumed an attrition rate of 5%. The actual attrition rate from
baseline to end line was only 2.4%.

F. Program (Treatment) Administration

The CAL and workbook programs were implemented by a university-based
nongovernmental organization (NGO) in western China that specializes in
after-school programs. Program sessions were held once a week from October
2017 to June 2018. Sessions were held for 40 minutes on Sunday afternoon
each week. In the weekly sessions, students were asked to complete math ex-
ercises taken from the (same) chapter of the standardized math textbook that
students were supposed to cover (according to the national curriculum) in class

2 Our sample still consisted of 130 schools and 352 classes (school-grades). However, because we
randomized the total 352 classes within county-grades (strata), it was not necessary that the classes
in any given school had all three treatment conditions. For example, the grades 4, 5, and 6 classes in
school A may have all been assigned to supplemental CAL, while the grades 4, 5, and 6 classes in
school B may have been assigned to supplemental workbook, control, and supplemental workbook,
respectively.

13 We conservatively used the following parameters to estimate the sample size for the study: () in-
traclass correlation coefficient (adjusted for strata fixed effects), 0.10; () average number of boarding
students per class, 11; (¢) R* of 0.40 (controlling, e.g., for baseline math achievement). With
alpha = 0.05 and beta = 0.8, we estimated that we would need 115 classes per treatment arm for
a minimum detectable effect size of 0.14 SD.
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each week. The programs had facilitators who were trained by our research
team to organize and supervise the supplemental learning time. The facilitators
were instructed to not provide instruction to the students but rather to make
sure that students stayed on task in terms of doing supplemental exercises par-
ticular to the week. Facilitators were allowed to assist students only with sched-
uling, computer hardware issues, software operations, and handing out and
collecting workbooks. They were instructed to not answer questions regarding
the material. According to our observations, there was little instruction-based
communication during the CAL sessions. The facilitators were, for the most
part, not the regular math teachers for the students.

The CAL and workbook programs were designed to be as similar as possible.
For example, the two programs were implemented by the same NGO and were
held on the same days of the week, for the same amount of time, and for the
same number of times during the school year. They also had the same curric-
ular content each week and the same facilitator training and instructions. At
end line, we found roughly similar attendance rates for CAL and workbook ses-
sions for the two treatment groups.

The software is used in schools in China nationwide. Similar to most CAL
software for this age group, the software relied on vivid images and was
gamified (see fig. Al). If students answered an exercise correctly, they received
virtual coins with which they could buy virtual gear and outfits. When students
did a problem incorrectly, they would receive feedback that it was incorrect and
solutions if they got stuck. Instead of using computers, students assigned to
workbook sessions completed pencil-and-paper math exercises. As with any
standard workbook, students could check solutions for the odd-numbered ex-
ercises at the back of the workbook.

The supplemental CAL and workbook content was aligned with the stan-
dardized, government-mandated curricula for each grade. Unlike students in
less developed countries, students in rural China are much more likely to be
on grade level in terms of achievement outcomes (Khor et al. 2016). Students
and teachers are rarely absent from class, and students are taught a standardized
curriculum at a regular pace.

The CAL program that we evaluate in this study demonstrated positive ef-
fects on a range of educational outcomes in previous studies in China (Lai et al.
2013, 2015; Mo et al. 2014, 2015). Students receiving supplemental CAL in-
creased math and language test scores, the degree to which they liked school,
self-efficacy, and interest in learning (Lai et al. 2015; Bai et al. 2023). Software
differs along many dimensions, of course, and thus some caution is warranted
in generalizing the results to different applications, but the software we evaluate
here has been shown to work and is widely used in China.
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G. End-Line Survey and Primary Outcomes

We conducted the end-line survey with the students, teachers, and principals.
As in the baseline, students took a 35-minute standardized math exam.!* In the
analyses, we convert end-line math exam scores into z-scores by subtracting the
mean end-line math score of the control sample and dividing by the standard
deviation of the control sample. We also asked math teachers to provide each
student’s math grades (as distinct from math test/exam/achievement scores).
Separate from test scores, grades capture other cognitive and noncognitive di-
mensions of human capital and are predictive of later life outcomes (Borghans
etal. 2016)." Furthermore in the context of China, grades are operationalized
as the teacher’s independent evaluation of a student’s within-class ranking in
overall ability and are a less lumpy measure than letter grades provided in the
United States. For the analyses, we convert math grade ranks into percentiles
on the basis of class size. The correlation between math test scores and math
grades is 0.529. Although randomization was at the class level, boarding students
represent only a fraction of the students in the class thus providing variation in
ranks. We also asked students about the degree to which they liked math class,
time spent on math homework, and time spent on language homework.'®

H. Balance Check

Table Al presents tests for balance on baseline observables across the treatment
arms. The table presents the results from a total of 36 tests comparing average
variable values across the treatment and control arms. These tests were con-
ducted by regressing each baseline variable on a treatment group indicator

' Like the baseline test, the end-line math test was grade appropriate, tailored to the national and
provincial-level mathematics curricula. Although grade-appropriate tests may present a problem in
some developing countries (because student learning is, on average, below grade level), this was
not the case in our sample schools. Our baseline and end-line math tests, which had anchor items,
allowed us to produce vertically scaled scores. The scaled scores show that the sample students, on
average, made substantive achievement gains within each grade.

The tests were constructed by trained psychometricians in multiple steps. Test items for mathe-
matics tests were first selected from standardized mathematics curricula for each grade (4, 5, and
6). The content validity of these test items was checked by multiple experts. The psychometric prop-
erties of the test were then validated by using data from extensive pilot testing. The tests had good
psychometric properties (Cronbach alpha of approximately 0.8, unidimensionality, and a lack of dif-
ferential item functioning by gender). An analysis of the pilot, baseline, and end-line test results also
indicated that the tests did not suffer from floor or ceiling effects.

!> In conversations with teachers, we found that grades in math courses were determined by home-
work, class performance, understanding of material, exams, and final exam.

16 As stated in our preanalysis plan, math exam scores are the primary outcome for the study while
the rest are secondary outcomes (that we do not power for and do not adjust for multiple hypothesis
testing).
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and controlling for strata. For tests of student-level variables, standard errors
were adjusted for clustering at the class level.

Out of the 36 tests, only one was statistically different from zero at the 10%
level and one at the 5% level. The results from table Al therefore indicate that
balance was achieved across the three arms, especially as a small number of sig-
nificant differences is to be expected (by random chance). Our key baseline co-
variates (baseline math test scores and grades) were not statistically different be-
tween any of the three treatment arms (even at the 10% level).

Il. Results

Estimates of equation (6) for math test scores are reported in table 1. For the
full sample, we find a positive point estimate but no statistical evidence of a
positive effect of the overall CAL program on math test scores. Turning to iso-
lation of the technology effect of CAL, we also find no effect on test scores. Fi-
nally, the CAL technology estimate is not statistically different from the CAL
program estimate.

As noted above, a complication regarding the interpretation of the overall
CAL program effect estimates is that they include the potential crowd out (or
crowd in) of homework time on the subject. This crowd out could be respon-
sible for the null effect finding. Additionally, the next step toward recovering
the technology component (0) defined in equations (4) and (5) is to estimate

TABLE 1
CAL PROGRAM AND TECHNOLOGY EFFECTS ON MATH TEST SCORES
All Students Boys Only Girls Only
(N = 3,928) (n=2,142) (n=1,785)
(1) ) (©)) () 6) (6)
CAL program (CAL treatment — control) .033 .032 .099** .099** —.044 —.045
(.039) (.039) (.049) (.049) (.046) (.046)
CAL technology (CAL treatment —
workbook treatment) .059 .061 .075 .074 .039 .041
(.044) (.044) (.054) (.054) (.054) (.054)
CAL program — CAL technology
(workbook treatment — control) —.026 —.029 .025 .025 —.084 —.086
(.046) (.046)  (.060) (.060) (.052) (.052)
Additional controls No Yes No Yes No Yes
R? 432 436 442 445 432 437

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline math score. Even-numbered columns also control for the fol-
lowing baseline covariates: liking math (scale 1-100), student age (years), gender, father graduated junior
high, mother graduated junior high, teacher experience (years), teacher gender, teacher attended col-
lege, number of boarding students in the class, class size. Cluster (class-level)-robust standard errors are
in parentheses.

** p<.05.
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TABLE 2
CAL PROGRAM AND WORKBOOK TREATMENT EFFECTS ON TIME ON MATH OUTSIDE
OF SCHOOL (HOMEWORK HOURS)

All Students Boys Only Girls Only
(N = 3,930 (n = 2,145) (n=1,784)
(1) () @) (@) 5) (6)
CAL treatment — control ('qc) —.149 —.154 .065 .065 —.387* —.393**
(199)  (199)  (241)  (242)  (.198) (197)
Workbook treatment — control (V) 128 123 .305 298  —.068  —.085
(.201) (.201) (.239) (.240) (.207) (.206)
CAL treatment — workbook treatment -.277 -.277 —.240 —.233 -.319 —-.308
(.198) (.197) (.243) (.242) (.202) (.201)
Additional controls No Yes No Yes No Yes
R? .099 .099 .096 .098 121 125

Note. CAL treatment — control (3°) and workbook treatment — control (yV¥) are reported for crowd out
(crowd in) estimates of the two treatments (see eqq. [2] and [3]). Math homework time (hours last week):
control group mean = 3.36, SD = 2.70. All columns control for baseline math score. Even-numbered
columns also control for the following baseline covariates: liking math (scale 1-100), student age (years), gen-
der, father graduated junior high, mother graduated junior high, teacher experience (years), teacher gender,
teacher attended college, number of boarding students in the class, class size. Cluster (class-level)-robust
standard errors are in parentheses.

* p<.10.

** p<.05.

whether homework time is affected by the two treatments. Table 2 reports es-
timates of CAL and workbook treatment effects for time spent on math home-
work (i.e., not during school and not during the CAL or workbook sessions as
part of the experiment). From equation (4), 7° can be estimated from CAL
treatment — control, and 9¥* can be estimated from workbook treatment —
control. All of the point estimates on homework time are small and statistically
insignificant. We do not find evidence that students’ homework time is altered
by either the CAL or workbook treatments. This is reasonable given that teach-
ers continued to require regular homework, and the CAL and workbook ses-
sions were run independently of the classroom."”” Given these findings, we
can interpret the CAL technology effects estimates presented in table 1 as es-
timates of the parameter 6 in equations (A1’) and (A3').

Boys and girls use computers differently, and there are much higher levels
of video-game use among boys (Kaiser Family Foundation 2010; Fairlie 2015;
Algan and Fortin 2018)."* Additionally, boys and girls differ substantially in ac-
ademic performance in schools in China (Hannum and Park 2007; Xu and Li
2018; Eble and Hu 2019). Thus, we estimate effects of CAL, which is video game
based, separately for boys and girls. Table 1 also reports estimates of equation (6)

17 We also find that the CAL or workbook sessions do not crowd-out time on other subjects (in our
case, the main other subject students took in primary school: language).

'8 Program for International Student Assessment (PISA) data indicate that 47% of boys compared
with 16% girls play a computer game every day (Algan and Fortin 2018).
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for boys and girls. The patterns for CAL program and isolated technology effects
are more apparent for boys."” The CAL program has positive and significant ef-
fects on boys’ test scores (0.100). On the other hand, we find no evidence of pos-
itive CAL technology effects for boys. For test scores, the point estimates are
smaller and statistically indistinguishable from zero. Estimates reported in table 2
for effects on homework time show null effects similar to the results for the
total sample. Thus, we do not find evidence of substitutability for homework
time for boys, implying that the CAL technology estimate can be interpreted
as the parameter 0.

We find no evidence of significant effects of either the CAL program or CAL
technology effects on the test scores of girls. Table 1 reports estimates of equa-
tion (6) for girls. The CAL program and CAL technology point estimates for
test scores are small in magnitude and not statistically significant. The estimated
effects for CAL might differ by gender because boys and girls engage differently
with technology (Kaiser Family Foundation 2010; Fairlie 2015; Algan and
Fortin 2018). Additional analyses do not reveal any clear explanations for
why our results differ, however. One possibility is there might have been a small
amount of substitutability away from homework time for girls. Estimates re-
ported in table 2 for effects on homework time show some evidence of negative
effects for girls.

We are finding smaller CAL program effects on test scores than the large
positive estimates in previous studies (e.g., Banerjee et al. 2007; Lai et al.
2013, 2015; Bohmer 2014; Mo et al. 2014). Treatment intensity might or
might not be a reason that we do not find strong positive effects on test scores
for the total sample. Previously, some China studies’ CAL interventions involved
two session of 40 minutes a week for 2 or 3 semesters (Lai et al. 2013; Mo et al.
2014), but some studies found a significant effect with intervention of 2 sessions
of 40 minutes a week for 1 semester (Lai et al. 2015), which would be similar to
our treatment intensity of one 40-minute session a week for 2 semesters. As
noted above, the software is similar to software used in previous studies, so this
is unlikely to explain differences. The types of tests are also unlikely to explain
differences because they were also similar to those of previous studies in China.
Admittedly, it is not clear what might explain the differences in findings for test
scores.

A. Effects on Grades
Estimates of equation (6) for math grades are reported in table 3. For the full
sample, we find a positive and statistically significant effect of the overall CAL

!9 We note that the results presented in table 1 should be interpreted with some caution because of
the nine reported coefficients, only one is statistically significant.
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TABLE 3
CAL PROGRAM AND TECHNOLOGY EFFECTS ON MATH GRADES: ALL STUDENTS

Grade (Rank; Grade Rank, Class
N = 3,829) N=>10 (N = 3,750)
(1 2 3) (4)
CAL Program (CAL treatment — control) 1.743* 1.758* 1.866** 1.876**
(.919) (.922) (.925) (.929)
CAL technology (CAL treatment — workbook treatment) 212 155 234 178

(996)  (999)  (1.013) 1.017)
CAL program — CAL technology (workbook treatment —

control) 1.531* 1.603* 1.632* 1.697*
(.877) (.876) (.895) (.894)
Additional controls No Yes No Yes
R .300 .308 299 .308

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline class rank in math. Even-numbered columns also control for
the following baseline covariates: liking math (scale 1-100), student age (years), gender, father graduated
junior high, mother graduated junior high, teacher experience (years), teacher gender, teacher attended
college, number of boarding students in the class, class size. Cluster (class-level)-robust standard errors are
in parentheses.

* p<.10.

** p<.05.

program on the student’s math grade. The coefficient estimate on math grade
indicates that the CAL program increased a student’s ranking in the class by
1.8 percentiles. After excluding very small classes, which create a high level
of variance because movements in grade-class rankings are amplified, we find
that the CAL program increased a student’s ranking in the class by 1.9 percen-
tiles.”® Turning to isolating the technology effect of CAL, we find no effect on
math grades. For math grades, even in the face of the positive CAL program
estimate, we do not find a technology-based effect of CAL that is statistically
distinguishable from zero. Furthermore, the CAL technology estimate is statis-
tically different from the CAL program estimate (1.53—1.70 percentile points).
As noted above, by the finding of null effects on homework time by either the
CAL or workbook treatments, we can interpret the CAL technology effects es-
timates presented in table 1 as estimates of the parameter 0 in equations (A1’)
and (A3').

Taken together, the results suggest that even though the “EdTech” program
may positively influence student learning outcomes for the average student,
part of the effect is due to additional inputs such as time on instruction that
supplemental workbook sessions (the “Ed” without the “Tech”) also offer. In
fact, our estimates for performance in math class suggest that the entire effect

20 The resulting sample size is only 2% smaller than the total sample size. The median class size in the
sample is 36.
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is due to additional inputs and that the isolated technology-based CAL effect
is zero.

We also estimate effects of CAL on math grades separately for boys and girls.
Tables 4 and 5 report estimates of equation (6) for boys and girls, respectively.
The patterns for CAL program and isolated technology effects are more appar-
ent for boys. The CAL program has positive and significant effects on boys’ test
performance in math class (3.4 percentile points). On the other hand, we find
no evidence of positive CAL technology effects for boys. For grades, the point
estimates are smaller and statistically indistinguishable from zero. The esti-
mates for math grades are also precise enough to show a statistically significant
difference between the CAL program and CAL technology estimates essentially
at the 10% level. The results for boys provide additional evidence that the iso-
lated CAL technology effect might be small and that part of the positive CAL
program estimate is due to additional program inputs such as more time spent
learning math. Estimates reported in table 2 for effects on homework time
show null effects similar to the results for the total sample. Thus, we do not find
evidence of substitutability for homework time for boys, implying that the
CAL technology estimate can be interpreted as the parameter 6.

We find no evidence of significant effects of either the CAL program or CAL
technology effects on math grades of girls. Table 5 reports estimates of equa-
tion (6) for girls. The CAL program and CAL technology point estimates are

small in magnitude, inconsistent in sign, and not statistically significant.

TABLE 4
CAL PROGRAM AND TECHNOLOGY EFFECTS ON MATH GRADES: BOYS ONLY
Grade (Rank; Grade, Class
n = 2,095) N=>10(n = 2,053)
(1 ) 3) (4)
CAL program (CAL treatment — control) 3.414%**%  3.430***  3.488***  3.506***
(1.280) (1.277) (1.291) (1.288)
CAL technology (CAL treatment — workbook treatment) 1.540 1.530 1.482 1.455

(1.456) (1.449) (1.480) (1.472)
CAL program — CAL technology (workbook treatment —

control) 1.874 1.900 2.006 2.051
(1.218) (1.223) (1.249) (1.253)

Additional controls No Yes No Yes
R 307 311 .307 312

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline class rank in math. Even-numbered columns also control for
the following baseline covariates: liking math (scale 1-100), student age (years), gender, father graduated
junior high, mother graduated junior high, teacher experience (years), teacher gender, teacher attended
college, number of boarding students in the class, class size. Cluster (class-level)-robust standard errors are
in parentheses.

*x < 01,
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TABLE 5
CAL PROGRAM AND TECHNOLOGY EFFECTS ON MATH GRADES: GIRLS ONLY

Grade (Rank; Grade, Class
n=1,733) N=>10(n = 1,696)
(1) ) ©)) (4)
CAL program (CAL treatment — control) —.526 —.590 —.345 —.434
(1.371) (1.371) (1.374) (1.373)
CAL technology (CAL treatment — workbook treatment) —1.451 —1.350 —1.365 —1.268

(1.519) (1.526) (1.540) (1.549)
CAL program — CAL technology (workbook treatment —

control) .925 759 1.019 .834
(1.375) (1.396) (1.394) (1.416)

Additional controls No Yes No Yes
R? .302 .308 299 .305

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline class rank in math. Even-numbered columns also control for
the following baseline covariates: liking math (scale 1-100), student age (years), gender, father graduated
junior high, mother graduated junior high, teacher experience (years), teacher gender, teacher attended
college, number of boarding students in the class, class size. Cluster (class-level)-robust standard errors are
in parentheses.

A common argument for how CAL, or EdTech more generally, works is that
it increases engagement in subject material. If students enjoy learning math
through CAL, that enjoyment could spill over to their math classes. Table 6
reports estimates of equation (6) for whether students report liking their math
class.”!

The results differ for liking math class. For all students, both the CAL pro-
gram effect and the CAL technology effect are positive and statistically signif-
icant. The CAL technology effect is roughly 2.7 percentile points. Another key
finding here is that the CAL program and CAL technology effects sizes are es-
sentially the same. Spending more time on math is not the underlying cause of
why the CAL program treatment has a positive effect on liking math, and in-
stead the vivid images, gamification, and other technology-based attributes of
CAL might have increased overall enjoyment of math. For boys, the CAL pro-
gram effect is positive and statistically significant, but the CAL technology ef-
fect is statistically insignificant. The difference in point estimates, however, is
small. For girls, the CAL technology effect is positive and statistically signifi-
cant, but the CAL program effect is not significant. The CAL program versus
technology difference is larger than that for boys but also not statistically sig-
nificant. Overall, we find some evidence that the technology component of
CAL has a positive spillover effect on students liking their math class. This is

2! The end-line survey question was worded carefully to refer to the student’s math class and not to the
CAL or workbook sessions.
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TABLE 6
CAL PROGRAM AND TECHNOLOGY EFFECTS ON LIKING MATH CLASS (SCALE 1-100)

All Students (N = 3,931)  Boys (n = 2,145) Girls (n = 1,785)
(1) () @) (@) (5) (6)

CAL program 2.580* 2.595* 3.648**  3.675** 1.405 1.476
(1.336) (1.327)  (1.644) (1.639)  (1.557)  (1.540)
CAL technology 2.675** 2.714** 2.467 2.551 2.813*  2.855*
(1.357) (1.359) (1.624)  (1.628) (1.672)  (1.679)
Difference (program — technology)  —.094 =119 1.181 1124  —-1.408 —1.379
(1.491) (1.485) (1.780)  (1.776) (1.844)  (1.824)
Additional controls No Yes No Yes No Yes
R? 170 72 163 165 195 .201

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline liking math class (scale 1-100), control group mean = 87.2.
Even-numbered columns also control for the following baseline covariates: student age (years), gender,
father graduated junior high, mother graduated junior high, teacher experience (years), teacher gender,
teacher attended college, number of boarding students in the class, class size. Cluster (class-level)-robust
standard errors are in parentheses.

* p<.10.

** p<.05.

consistent with the argument that the use of technology can increase interest in
subject material. This increased interest may or may not translate into higher
academic performance over the long run.

B. Distributional Effects

The results from the treatment regressions provide some evidence of CAL pro-
gram effects and smaller or null CAL technology effects at the mean. Turning
the focus to other parts of the distribution, we first estimate models in which
we create dependent variables indicating that the student is above the median
of the test score or grade distribution (table A2). For having a test score above
the median, we find little evidence of significant effects for either the CAL
program or CAL technology. For receiving a grade above the median, we find
a positive and statistically significant coefficient on the CAL program effect
(0.036, SE = 0.018) but a small and statistically insignificant coefficient on
the CAL technology effect (0.009, SE = 0.018). These results are consistent
with the main regression results.

We also estimate quantile treatment effects regressions to test for differential
treatment effects across the posttreatment outcome distribution (Parente and
Santos Silva 2016). Figures A2 and A3 display estimates and 95% confidence
intervals for each percentile for the CAL program and CAL technology effects
for math test scores and math grades, respectively. For test scores, we find some
evidence of positive CAL technology effects at the bottom of the distribution.
For most of the distribution, we find null estimates of CAL program and CAL
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technology effects. For math grades, the patterns are consistent with the find-
ings for mean treatment effects: larger positive CAL program effects through-
out the distribution but essentially zero CAL technology effects throughout the
distribution. Although the quantile treatment estimates are not precisely mea-
sured, they do not change the conclusion from the mean effects reported in ta-
bles 1 and 3. Mean effect estimates do not appear to be hiding differential ef-
fects at different parts of the distribution. We thus focus on mean effects.

C. Heterogeneity on Initial Math Ability

We estimate CAL program and CAL technology effects by baseline math abil-
ity terciles. Table A3 reports estimates of equation (6) separately by tercile de-
fined by baseline math test scores (teachers do not assign class ranks at the
beginning of the school year). For the bottom and top terciles, we find similar
results as for the results for all students. We find positive CAL program effects
on end-line math class rank and CAL technology point estimates that are no-
tably smaller and are not statistically distinguishable from zero. We find no dis-
cernible effects on end-line math test scores. For the middle tercile, we do not
find statistically significant coefficients for either test scores or grades. The main

findings thus hold for both the lowest-ability and highest-ability students.

D. Robustness Checks

We conduct several robustness checks of our main results. First, we examine
whether the lack of evidence of a CAL technology effect is due to students
not having any experience working on computers in school. In contrast, we
find that all of the schools in our sample have computer time at school, and
self-reported use by schoolchildren indicates that 87% have used computers
in school at baseline. Nevertheless, we estimate the test score and grade regres-
sions with only students who self-report use of a computer at school as a check.
We find similar results to those reported in table 1 (results not shown for the
sake of brevity). The null finding for the CAL technology effect is not due to
schoolchildren not being familiar with use of computers at school.

Second, we examine whether the estimates of effects on student grades are
sensitive to having a high percentage of boarding students in the classroom. In
classes with a high percentage of boarding students and treatment being as-
signed at the class level, there could be an attenuated treatment effect. To ad-
dress this issue, we estimate the grade regression (which is reported in cols. 1
and 2 of table 3) excluding classes with 90% or more boarding students, 80%
or more boarding students, and 70% or more boarding students. We find that
the CAL program coefficients remain positive and roughly similar in magnitude
although they lose some statistical power (tables A4—A6). The CAL technology
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coefficients remain small (often negative) and not close to statistical signifi-
cance. The robustness of results is consistent with boarding students represent-
ing a small share of students in the classroom.

IV. Conclusions

Although EdTech is rapidly expanding around the world and accelerated in
response to the COVID-19 pandemic, relatively little is known about the ad-
vantages and disadvantages of use of technology in education. Is EdTech, as
proponents argue, revolutionizing the way in which students learn? The answer
to this question is not straightforward because there are several possible inputs
to educational production that are often entangled with the technology provided
in CAL programs, making it difficult to isolate effects. To estimate the technol-
ogy effect of CAL and other key theoretical parameters, we design a field exper-
iment in rural China that includes a novel pencil and paper-workbook treatment
in addition to a regular CAL program treatment and a control group. Estimates
from the experiment indicate that, for the average student, the overall CAL pro-
gram and the isolated technology component of CAL have no effect on math test
scores. Given gender differences in computer use, we examined effects for boys
and girls separately. For boys, we find that the CAL program increases math test
scores by 0.100, but when we isolate the CAL technology effect, the point esti-
mates become noticeably smaller and statistically indistinguishable from zero.
For girls, we do not find positive effects of the CAL program or CAL technology
component on test scores.

Turning to math grades, estimates from the experiment indicate that for the
full sample the CAL program improves grades, whereas the isolated technology
component of CAL has no discernible effect on grades. The difference between
the two estimated effects is statistically significant. For boys, we find that the
CAL program increases math grades by 3.5 percentile points, but the point es-
timates become noticeably smaller and statistically indistinguishable from zero
for the CAL technology effect. The stronger effects on grades than on test
scores might be due to the program having greater effects on noncognitive than
on cognitive skills. We also find no evidence of substitution effects of the CAL
and workbook sessions on homework time in math. On the other hand, we
find evidence suggesting that both the CAL program and CAL technology af-
fect how much students report that they like their math class, which might or
might not have longer-term effects.

Our study provides a second-generation “pencil test” (DiNardo and Pischke
1997). If pencil and paper-workbook sessions and the CAL program are sim-
ilarly timed, have similar content, and are similarly structured, and the pencil
and paper-workbook sessions show effects on academic performance that are
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roughly similar to those of the CAL program, then it raises concerns that another
factor common to both is driving the results. In particular, the pencil and paper-
workbook sessions, by construction, provide more time spent learning subject
material, which might be the key educational input that increases academic per-
formance and not the new computer technology in CAL programs. The technology-
based effect of CAL might be relatively small and might not be the primary driver
of the estimated large positive effects of CAL programs found in many previous
studies.

Another argument for the rapid adoption of EdTech around the world is
that it has low marginal costs. Once developed, copying software or providing
it online is nearly costless to provide access to the additional student. In our
experiment, however, we find that the marginal costs of pencils and paper work-
books are also low and, in fact, are lower. The costs of photocopying workbooks
are small. Furthermore, workbooks do not require the high fixed costs and
maintenance costs of computers, internet connections, and extra space to house
computers. Back-of-the-envelope calculations indicate that the workbook pro-
gram has roughly 22% lower costs with the conservative assumption of zero
costs for computers and internet (see app. B).

An area of promise is that we find evidence of a positive effect of CAL tech-
nology on student interest in math but no effect on math interest from extra
time spent learning math. More research is needed on whether the technology
in EdTech can spark an interest in math among young children and generate
longer-term interest and success in math. More research is also needed on sep-
arating the effects of various inputs in educational production, especially the
mechanical effects of extra time spent learning, in supplemental educational
programs.”” The results of this study raise concerns about the attribution of
the effectiveness of key inputs in these programs and have broader implications
for evaluations of any supplemental educational program.

Finally, the findings also provide new evidence on the substitutability of
CAL for traditional learning. More research is clearly needed on whether and
to what degree EdTech can substitute for traditional learning both as a pedagog-
ical tool and as a delivery platform. This is especially pertinent today in light of
the full-scale, comprehensive, global movement to EdTech at all levels of educa-
tion in response to COVID-19. How much human capital accumulation will be
lost or will CAL, online classes, remote learning, and other forms of EdTech be
able to substitute adequately for traditional teaching and learning methods? Our
finding that EdTech and workbook exercise sessions of equal time and content

22 Other components of EdTech could also be evaluated. For example, CAL might be improved with a
component that regularly informs teachers and parents of student progress (Bergman 2021).
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outside of school hours had the same effect on standardized math test scores and
grades in math classes suggests that EdTech might provide at least some substi-
tution for traditional learning. EdTech was certainly widely used to substitute as
a platform for delivering content during the pandemic, but how much informa-
tion was lost (or gained)? These are important questions as we continue to de-
velop and expand EdTech programs.

Appendix A

Theoretical Model of Investment in EdTech

We sketch out a theoretical model that illustrates the channels by which CAL
might affect academic outcomes among schoolchildren. Computer resources
such as CAL are added to a standard model of education production.” In
the context of after-school education production by students, the binding con-
straints in such a model are the amount of after-school time available for learn-
ing and the budget for parental or school resources for after-school learning.
The focus of the model is on how CAL investment affects various math time
inputs, but we also discuss the theoretical implications of how CAL programs,
more generally, might provide additional instructional support by teachers or
aides and more attention to students during sessions. We consider a value-
added model of education and focus on academic performance in math:*

A = f(X, S, T, T)") subject to

™ =T1"™+ 1°
Al
M+ T < T, Y

PTR]';TR + PCY—;‘C S Bl'.

A measure of academic performance in math, A4, is assumed to depend on
the characteristics of a student and his or her family (including prior academic
performance), X, school and teacher characteristics, S, total time allocated to
learning math, 7™, and time allocated to learning math on the computer, 7.
Time allocated to learning math on the computer is essentially entered twice to
allow for a direct technology effect and a separate time spent on learning math
effect. Total time allocated to learning math consists of traditional learning,

23 For examples, see Hanushek (1979, 1986), Figlio (1999), and Rivkin, Hanushek, and Kain
(2005).

24 See Hanushek (1979) for an early discussion of value-added models in the economics of education
literature.
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T, and CAL, 7. The amount of time spent on learning math is constrained
by total available after-school learning time, 7, which includes time spent after
school on all other activities, 7,°™". Investments in traditional learningand CAL
are subject to costs (P™® and P¢) and per student budget B, for after-school
learning expenditures on math.

If students, parents, and schools do not make optimal choices of CAL, possibly
due to not having access to technology or other resource and information con-
straints, then an exogenous reallocation toward CAL could be positive. On the
other hand, if students, parents, and schools already optimally allocate time, then
an exogenous reallocation toward CAL and away from other more productive
forms of learning will result in a negative or zero effect on math performance.”
From equation (A1), the total marginal effect of CAL on academic achievement is

d4 84 N 8A 6TM
d7¢ 67 6TMSTC

The total effect is composed of a direct effect of increasing CAL time on math and
an indirect effect through increasing total time spent on learning math.

CAL might have a direct or “technology” effect on academic achievement
independent of more time spent on math (i.e., 64/67°¢ # 0). CAL is video
based, and often game based, and thus might be more engaging than tradi-
tional learning. The game-based features of educational software might in-

(A2)

crease learning interest as well as learning performance (Ebner and Holzinger
2007; Burguillo 2010). CAL might also provide faster feedback on problems
compared with the feedback associated with traditional modes of learning
(Van der Kleij et al. 2015). On the other hand, the game-based nature of CAL
might reduce interest in completing traditional homework or learning in class
and hence decrease achievement. In addition, solving math problems on a com-
puter instead of writing them down on paper with a pencil could commit them
less to memory (Vincent 2016). The net technology effect of these potentially
offsetting mechanisms is theoretically ambiguous.

Using the total time on math constraint in (A1), we can rewrite the total
marginal effect of CAL on math achievement:

TR
dA 04 04 <1 +5T ) (A3)

= +
dr¢ 87  6T™ 6T¢

Here we can view the indirect effect (the second term in eq. [A3]) as having
two parts. The first part is the effect of a one-to-one increase in math time by

25 Parents and students might limit time on computers for after-school learning because of concerns
over distraction, safety, and other issues.
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increasing CAL time. As discussed in detail below, this part of the effect of intro-
ducing educational technology is important and often overlooked in previous lit-
erature. Introducing CAL in a subject implicitly increases time spent learning
that subject. The second part of the indirect effect of CAL captures the possibil-
ity of crowd out (or crowd in) of traditional learning in math. CAL might dis-
place some of the time a student normally devotes to traditional forms of learning
such as homework or independent study because of the overall time constraint
(e, 6 7™ /6T < 0). The crowd out of homework time might result because of
the time constraint and/or the student viewing traditional learning as less fun or
engaging compared with learning math on the computer (which is often game
based). Working in the opposite direction, however, there could be crowd in
where CAL might increase a student’s interest and confidence in math and ulti-
mately increase independent time studying math.

To make the theoretical model more tractable, we approximate with a lin-

ear education production function. We modify (A1) and (A3) as

A, = BX, + S, + 0TS + NTY, (A1)
dA
Sre =0 H N1+ ). (A%)

In this production function, 6 captures the direct or technology-based effect of
CAL on academic performance. It captures how CAL affects achievement
stripped of any mechanical effects through increased hours learning math or
any crowd-out or crowd-in effects on traditional forms of learning math. In
contrast, the full equation represented by (A3') captures the total effect of im-
plementing a CAL program, which includes time learning math on the com-
puter, total time learning math, and potential crowd-out effects on homework.

Appendix B

Cost Comparison

The main costs of the CAL program and workbook treatment sessions are for
training facilitators, paying facilitators to run the sessions, developing the soft-
ware or workbook, duplicating the software or workbook, and computer and
internet costs for the software. We assume that both the CAL software and
workbooks have a limited shelf life. We use the ingredient approach to measure
costs (Levin and Belfield 2015; Levin et al. 2017).

CAL Program Costs
Facilitator training—The cost to train facilitators includes communication
costs (3 training sessions X 10 renminbi [RMB]/training session = 30 RMB),
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training materials (20 RMB), and trainer remuneration (30 RMB). The teacher
training subtotal is 80 RMB/teacher, which is equivalent to 6.67 RMB/student
(assuming that the number of participants is 12).

Facilitator stipends.—Class subsidies are given to program teachers for im-
plementing the CAL sessions; this costs 850 RMB/teacher (for 17 weekly sessions
at 50 RMB per session). This comes out to 850/12 = 78.33 RMB/student.

Software development.—The cost to design and develop the software is a
one-time expenditure. Assuming that the software will last for 5 years, its per
student unit cost is 200,000 RMB / 5 years / 88 classes / (12 students/class) =
37.88 RMB/student.

Reproduction costs—Zero.

Computer and internet costs—Zero (conservatively assuming that these already
exist for regular classes and no extra wear-and-tear costs from CAL sessions).

Total cost.—Based on the above, the total cost for the supplemental CAL
intervention is 6.67 + 78.33 + 37.88 = 122.80 RMB per student (roughly
US$18).

Workbook Session Costs

Facilitator training—The cost to train facilitators includes communication
costs (3 training sessions X 10 RMB/training session = 30 RMB), training
materials (20 RMB), and trainer remuneration (30 RMB). The teacher train-
ing subtotal is 80 RMB/teacher, which is equivalent to 6.67 RMB/student (as-
suming that the number of participants is 12).

Facilitator stipends.—Class subsidies are given to program teachers for imple-
menting the workbook sessions and cost 1 class/week x 17 weeks x 50 RMB/
class = 850 RMB/teacher. This comes out to 850/12 = 78.33 RMB/student.

Workbook development.—The cost to design and develop the workbook is a
one-time expenditure. Assuming that the workbook content will last for
5 years, its per student unit cost is 5,300 RMB / 5 years / 88 classes / (12 stu-
dents/class) = 1 RMB/student.

Reproduction costs.—The cost to photocopy and ship the workbook per stu-
dent is 11 RMB.

Total cost—Based on the above, the total cost for the supplemental workbook
interventionis 6.67 + 78.33 + 1 + 11 = 97 RMB/student (roughly US$14).
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Figure A1. Example graphics from the CAL software.
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TABLE A1
SUMMARY STATISTICS AND BALANCE CHECK

p-Value p-Value p-Value
Control  CAL  Workbook (Col.2-Col. 1) (Col.3 — Col. 1) (Col.2 — Col. 3)
@) () (©) (4) 5) (6)

A. Student Characteristics

—

. Standardized math

score -.026 -.036 —-.032 669 .881 776
(988) (1.062) (1.017)

2. Within-class rank

(using math score) 53.906 53.799 55.008 .860 .130 191
(29.498) (30.539) (29.453)

3. Female (0/1) 458 459 435 762 264 163
(.498) (.499) (.496)

4. Age (years) 11.095 11.017 11.048 874 738 612

(1.069) (1.115)  (1.109)

o

Father education
9 years or less (0/1) 441 400 424 .081 554 237
(.497) (.490) (.494)

6. Mother education
9 years or less (0/1) .390 .356 .365 .180 447 474
(.488) (.479) (.482)
7. Liking math —.052 .006 -.117 419 .399 124
(1.050) (1.015)  (1.087)
8. Observations 1,390 1,345 1,289
B. Teacher and Class Characteristics
1. Female (0/1) 445 391 460 .334 .909 417
(.497) (.488) (.499)
2. Experience (years) 16.239 13.425 15.424 .148 .843 121
(11.886) (11.050) (11.384)
3. College degree (0/1) 560 569 574 667 371 670

(.497)  (496) (.495)
4. Number of boarding
students 15.447 14517  16.290 162 949 .270
(6.776) (6.632) (79.547)

5. Number of total
students 35.426 32717  35.322 .019 223 313
(13.965) (14.217) (15.339)
6. Observations 118 116 118

Note. Means and SD (in parentheses) in cols. 1-3. The p-values in cols. 4-6 are calculated by using the
estimated coefficient and standard error on an indicator for the treatment group in a regression of each
baseline characteristic on the treatment indicator and controlling for randomization strata with robust
standard errors accounting for clustering within classes. Joint tests of all student/teacher baseline covar-
iates simultaneously show no significant difference between T1 and C (p-value: .860/.124), T2 and C (p-
value: .790/.862), or T1 and T2 (p-value = .184/.840 ). The above summary statistics pertain to the exper-
imental sample (boarding students only), In regard to line 1 of panel A, the larger sample of students
(boarding and nonboarding) was used to standardize baseline math scores.
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TABLE A2
CAL PROGRAM AND TECHNOLOGY EFFECTS ON WHETHER MATH TEST SCORES/GRADES ARE ABOVE THE MEDIAN

Math Test Score Above

Median (N = 3,928)

Grade (Rank) Above
Median (N = 3,829)

Grade (Rank) Above Median
for Class N> 10 (N = 3,722)

(1 ) 3) 4) (5) (6)

CAL program 016 .015 .036** .036** .038** .038**
(.020) (.020) (.018) (.018) (.018) (.018)
CAL technology .034 .035* .010 .009 .012 .01
(.021) (.021) (.018) (.018) (.019) (.019)

Difference (program —

technology) -.018 -.020 .026 .027 .026 .027
(.022) (.022) (.017) (.017) (.017) (.018)
Additional controls No Yes No Yes No Yes
R? 247 .253 165 173 165 175

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline counterpart of dependent variable (baseline math score or
baseline class rank in math above median [Y/N]). Columns 2 and 4 also control for the following baseline
covariates: liking math (1-100), student age (years), gender, father graduated junior high, mother gradu-
ated junior high, teacher experience (years), teacher gender, teacher attended college, number of board-
ing students in the class, class size. Cluster (class-level)-robust standard errors are in parentheses.

* p<.10.
** p< 05,
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TABLE A4
CAL PROGRAM AND TECHNOLOGY EFFECTS ON MATH GRADES, EXCLUDING CLASSES WITH CERTAIN
PERCENTAGES OF BOARDING STUDENTS

Exclusion of Classes with Exclusion of Classes with Exclusion of Classes with

Boarding Students Boarding Students Boarding Students
>90% (n = 3,571) >80% (n = 3,314) >70% (n = 3,082)
(1) ) @) (@) (5) (6)

CAL program 1.306 1.318 1.562 1.616 1.356 1.387
(.912) (.912) (.993) (.996) (1.029) (1.029)

CAL technology —.085 —.081 —.174 —.146 —.617 —.560
(1.060) (1.061) (1.110) (1.108) (1.224) (1.225)

Difference (program —

technology) 1.392 1.399 1.737* 1.762* 1.973* 1.947*
(.928) (.927) (.968) (.971) (1.073) (1.077)

Additional controls No Yes No Yes No Yes
R? .295 .304 291 .300 294 .302

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline counterpart of dependent variable (baseline class rank in math
test score). Even-numbered columns also control for the following baseline covariates: liking math (scale 1-
100), student age (years), gender, father graduated junior high, mother graduated junior high, teacher expe-
rience (years), teacher gender, teacher attended college, number of boarding students in the class, class size.
Cluster (class-level)-robust standard errors are in parentheses.

* p<.10.

TABLE A5
CAL PROGRAM AND TECHNOLOGY EFFECTS ON MATH GRADES, EXCLUDING CLASSES WITH CERTAIN
PERCENTAGES OF BOARDING STUDENTS: BOYS ONLY

Exclusion of Classes with Exclusion of Classes with Exclusion of Classes with

Boarding Students Boarding Students Boarding Students
>90% (n = 1,940) >80% (n = 1,814) >70% (n = 1,684)
M () ©)] (4) (5) (6)
CAL program 2.836** 2.836** 3.042%* 3.089** 2.332 2.426*
(1.289) (1.285) (1.385) (1.382) (1.428) (1.425)
CAL technology 1.072 1.020 749 692 -.123 —.068
(1.533) (1.525) (1.591) (1.577) (1.657) (1.647)
Difference (program —
technology) 1.765 1.816 2.294* 2.397* 2.454* 2.494*
(1.309) (1.313) (1.360) (1.365) (1.425) (1.438)
Additional controls No Yes No Yes No Yes
R? .302 .306 299 .303 .307 .310

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline counterpart of dependent variable (baseline class rank in math
test score). Even-numbered columns also control for the following baseline covariates: liking math (scale 1-
100), student age (years), gender, father graduated junior high, mother graduated junior high, teacher expe-
rience (years), teacher gender, teacher attended college, number of boarding students in the class, class size.
Cluster (class-level)-robust standard errors are in parentheses.

* p<.10.

** p< 05.
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TABLE A6
CAL PROGRAM AND TECHNOLOGY EFFECTS ON MATH GRADES, EXCLUDING CLASSES WITH CERTAIN
PERCENTAGES OF BOARDING STUDENTS: GIRLS ONLY

Exclusion of Classes with Exclusion of Classes with Exclusion of Classes with

Boarding Students Boarding Students Boarding Students
>90% (n = 1,630) >80% (n = 1,500) >70% (n = 1,398)
(1) ) @) (4) (5) (6)
CAL program -.715 —.734 —.383 —.443 —.051 —.168
(1.405) (1.396) (1.550) (1.544) (1.597) (1.589)
CAL technology —1.394 —-1.176 —1.281 —1.061 —1.289 —1.068
(1.615) (1.619) (1.681) (1.680) (1.775) (1.787)
Difference (program —
technology) 1.392 1.399 1.737* 1.762* 1.973* 1.947*
(.928) (.927) (.968) (.971) (1.073) (1.077)
Additional controls No Yes No Yes No Yes
R? .295 .303 .289 297 .287 .294

Note. CAL program is the overall program effect (i.e., CAL treatment relative to control), and CAL tech-
nology is the isolated technology-based effect of CAL (i.e., CAL treatment relative to workbook session
treatment). All columns control for baseline counterpart of dependent variable (baseline class rank in math
test score). Even-numbered columns also control for the following baseline covariates: liking math (scale 1-
100), student age (years), gender, father graduated junior high, mother graduated junior high, teacher expe-
rience (years), teacher gender, teacher attended college, number of boarding students in the class, class size.
Cluster (class-level)-robust standard errors are in parentheses.

* p<.10.
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