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Abstract: This study evaluates two interventions for residential water conservation.
Comparing households across an enforcement algorithm’s cutoff using a regression dis-
continuity design, we find that automated irrigation violation warnings cause substantial
water conservation but also shift some consumption from regulated to unregulated
hours within the week. In contrast, we show using data from a randomized experiment
with the same customers that normative homewater reports reduce water use by amuch
smaller amount, but that this social pressure is effective during all hours both before and
after automating irrigation policy enforcement. Our findings highlight the merits of im-
plementing multidimensional conservation programs.
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FRESH WATER AVAILABILITY REMAINS ONE of the most pressing environmental and
economic challenges in many regions around the world. The United Nations forecasts
that two-thirds of the world’s population will live with water-stressed conditions by 2025
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and that this outlookwill onlyworsenwith climate change.1Atmore local levels, concerns are
also growing about cities sinking fromoverextracting undergroundwater resources.2 And,
as weather patterns becomemore erratic and severe droughtsmore frequent, this will con-
tinue to increase the prevalence of prolonged water shortages such as those recently ex-
perienced in California, other southwestern states, and inmany regions around the world.

In conventional market settings, the response to a severe supply shortage is that prices
will increase and demand will adjust accordingly; however, prices in water markets are
rarely set competitively, and governments are typically constrained in implementing Pigou-
vian remedies to curtail water consumption (Olmstead et al. 2007). Instead, policy makers
rely heavily on water use regulations such as irrigation restrictions and social pressure—the
influence on people by their peers—to encourage voluntary water conservation.

The efficacy of social pressure is often limited. For instance, many water utilities pro-
vide residential customers with home water reports (HWR) that compare each house-
hold’s water consumptionwith that of their neighbors. Evaluations of randomizedHWR
typically find conservation effects of around 2%–5%—certainly not trivial but far from
adequate to address the magnitude of the shortages (e.g., Ferraro et al. 2011; Ferraro
and Price 2013; Mitchell and Chesnutt 2013; Bernedo et al. 2014; Brent et al. 2015;
Jessoe et al. 2019, 2021; Bhanot 2021). Moreover, Allcott and Kessler (2019) find that
the majority of conservation nudge recipients are unwilling to pay the marginal social cost
of the nudge, which questions the economic efficiency of such policies.

With regulations, the challenge is enforcement. For example, a common form of
water rationing is to restrict outdoor water use to certain days of the week, but the re-
liance on violators’ neighbors to be informants means that in practice these restrictions
are rarely enforced.3 However, for water conservation—as in many contexts—technol-
ogy is advancing rapidly to enable automated detection of violations and enforcement
1. The United Nations’ forecasts are available at www.un.org/waterforlifedecade/scarcity.shtml.
2. Some examples of sinking cities are www.nytimes.com/interactive/2017/02/17/world

/americas/mexico-city-sinking.html and www.nytimes.com/interactive/2017/12/21/world/asia
/jakarta-sinking-climate.html.

3. For instance, California state reports show that during the recent drought we study, most
water agencies that restricted irrigation never issued a single penalty (CA State Water Board,
www.waterboards.ca.gov). More generally, the poor quality of reporting of violations hinders
the scope of regulatory enforcement in many settings of environmental compliance monitoring
(e.g., Evans et al. 2009; Gilpatric et al. 2011).
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of regulations. Thus, given the aforementioned limitations, a promising second-best
policy to potentially address water shortages is technology-enforced restrictions on
water use.

We examine such a policy in this study, providing the first evaluation to our knowl-
edge of the effects of automating the enforcement of water conservation regulations. In
addition, we reevaluate an HWR social pressure intervention in the same setting and
with the same customers (Jessoe et al. 2019, 2021), providing for a direct comparison
between these two types of conservation policies as well as an evaluation of their layered
effects. Our findings indicate that automating the enforcement of preexisting residential
irrigation restrictions has large effects, inducing treated households to curtail their sum-
mer water consumption by about 31%. In comparison, we find—consonant with prior
WaterSmart studies in the literature—thatHWRreduce household water consumption
by about 3%. That is, the effects of technology-enforced regulations in this context are an
order of magnitude larger than those of the social pressure. Facilitated by novel high-
frequency data, we additionally show that automating enforcement causes households
to shift some water consumption into unregulated time periods, a form of environmen-
tal leakage; in contrast, HWR yield water conservation across the hours of the week.

To empirically arrive at these findings, we use data fromWaterSmart Software and a
Southern Californian water utility that measures hourly residential water consumption
using advanced metering infrastructure. In July 2015, the utility tested an innovative ap-
proach to enforcing existing mandatory restrictions by leveraging the smart meter data to
automate detection of irrigation violations and notify offending households.These notices
stipulated fines for continued violation of the preexisting irrigation policies and made it
clear that violations had been detected by computer algorithms. This pilot program dra-
matically increased the scope of enforcement: within 1 week, the one-time application of
automation increased the share of households that had ever been warned from 4.6% to
39.2%.4 We exploit the algorithmic nature of this strengthened enforcement in a regres-
sion discontinuity design that compares barely treated households to those whose tar-
geted water use fell just below the essentially arbitrary cutoff that designated an irrigation
violation. Throughout the postautomation summer water season, we estimate local aver-
age treatment effects (LATEs) of 566 gallons saved weekly per household—31% of the
mean—and that this overall effect is composed of gross conservation of 756 gallons
during irrigation-prohibited time periods and a gross increase in consumption of 190 gal-
lons when irrigation was allowed.

To directly compare these water conservation effects to those of social pressure, we
utilize a field experiment conducted byWaterSmart Software in partnership with Jessoe
4. The notices never state that this was a one-time pilot program testing the algorithm, but
to the extent that some households viewed the warnings as cheap talk, this implies that our es-
timates are lower bounds of the conservation treatment effects of a more persistent automated
enforcement of irrigation restrictions.
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et al. (2019, 2021). The experiment sent HWR to randomly selected households in the
same city during the months spanning the utility’s automated irrigation enforcement.
Using this randomization to identify intent-to-treat effects, we find—replicating their
results—that HWR reduce average household water consumption by about 78 gallons
per week during the summer water season, roughly 3% of the control group mean and
well within the range of estimates in the sizable literature on HWR. Extrapolating the
regression discontinuity (RD) estimates for the automated enforcement to apply to all
treated households (37% of the sample population), a comparison of the two interven-
tions on a per-treated-household basis shows that, while the overall effects of HWR
are economically significant, the total conservation induced is about a tenth of the mag-
nitude of that from automated enforcement of landscape irrigation regulations.

We then build upon this work to explore the layering of the two interventions. By
estimating treatment effects in the weeks just before versus just after the automated vi-
olation notices, we find average conservation effects from HWR of 79 gallons per week
prior to the automated enforcement (in May and June) and effects of 78 gallons just
after (in July through October). That is, our evidence is suggestive that the effects of
the randomized HWR are completely invariant to the regime change in irrigation en-
forcement. We additionally show that following this heightened enforcement, HWR
continue to cause water conservation both during time periods when irrigation is allowed
and during irrigation-prohibited days, including among households that are high-volume
water consumers (the vast majority of whom were sent violation notices). This pattern
starkly contrasts the increased water use during irrigation-allowed periods caused by
the automated enforcement. An actionable policy implication of these collective findings
is that, while technology-enforced regulations inducemuch greater behavioral change, so-
cial pressure serves as an effective simultaneous intervention to obtain additional conser-
vation and mitigate some of the environmental leakage from asymmetric regulations.

Our studymakes three primary contributions to the research literature.Most directly,
we provide the first empirical evidence on automating the enforcement of regulations that
target household resource conservation. The small literature on technology-enforced reg-
ulations has focused on automated traffic enforcement for speeding and red light viola-
tions, generally finding mixed evidence of social benefits (Retting et al. 2008; Hu and
McCartt 2016; Gallagher and Fisher 2020). The evidence from our study supports
the potential for large conservation benefits by the households targeted by automated en-
forcement for water policies, especially given the technological facilitation provided by
the rapid growth in smart water meter deployment.5
5. Forecasts from ABI Research and IHS Markit predict that there will be a global base of
400 million smart water meters by 2026, one-third of new meter installments (see media coverage
of these forecasts at businesswire.com/news/home/20190801005064/en/400-Million-Smart
-Water-Meters-Installed-Worldwide and technology.informa.com/610487/water-meters-market
-to-be-one-third-smart-by-2025).

https://businesswire.com/news/home/20190801005064/en/400-Million-Smart-Water-Meters-Installed-Worldwide
https://businesswire.com/news/home/20190801005064/en/400-Million-Smart-Water-Meters-Installed-Worldwide
https://technology.informa.com/610487/water-meters-market-to-be-one-third-smart-by-2025
https://technology.informa.com/610487/water-meters-market-to-be-one-third-smart-by-2025
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Second, we join a growing literature on the multifaceted approach of simultaneously
increasing both social pressure and financial or regulatory incentives to change behavior.
Policy makers regularly employ tactics such as layering strengthened regulations onto
heightened normative interventions to internalize externalities and promote voluntary
contributions toward public goods (Browne et al. 2020). For example, the US Forest
Service attempts to reduce forest fires using both extensive prohibitions of risky be-
haviors—backed by statutory financial penalties—and large-scale media campaigns
of normativemessaging such as “only YOU can prevent wildfires.”6 Prior studies focus on
how financial incentivesmight interact with social pressure for resource conservation (List
et al. 2017; Pellerano et al. 2017; Gillan 2018; Ito et al. 2018; Holladay et al. 2019).We
build on this literature by evaluating a context in which strengthened enforcement of ex-
isting regulations is implemented concurrently with a widely used form of social pressure.
We also show promising new results regarding their use in combination.

Finally, our findings serve as novel evidence that a credible threat of fines can substan-
tially influence people’s behavior. The threat of financial penalty is used as a primary pol-
icy instrument to back regulations in many settings, particularly so for environmental
contexts such as littering, emissions control, and trespassing in protected areas.Whereas
statutory penalties can readily be changed by policy makers, the expected value of a fine
also depends greatly on the level of enforcement (Becker 1968). In the setting we study,
official restrictions and penalties pertaining to irrigation remained unchanged while en-
forcement increased from virtually none to essentially complete enforcement.We provide
causal evidence that households are very responsive to this newly credible threat of finan-
cial penalties, in contrast to a body of work highlighting relatively minimal sensitivity of
water consumption to changing prices (e.g., Olmstead et al. 2007; Browne et al. 2020).
Technological advances are likely to further enable utilities and governments to automate
the enforcement of policies not only for water conservation, but for many other resources
and behaviors as well.
1. STUDY SETTING AND RESEARCH DESIGN

As in many regions of the world, Southern California has a history of extreme and per-
sistent variation in precipitation, including regular periods of extended drought conditions
(see fig. A1; figs. A1–A6 are available online). During the most recent drought (2011–
17), water utilities across California explored a wide variety of conventional and novel ap-
proaches to managing water demand in the face of rapidly shrinking supply. Our paper
evaluates two simultaneous policy interventions for residential water conservation that
were implemented in Burbank (Los Angeles County) by the local utility, BurbankWater
and Power (BWP). Methodologically, we utilize a regression discontinuity design to iden-
tify the effects of automating enforcement of preexisting landscape irrigation restrictions,
6. See US Forest Service messaging at firerestrictions.us and smokeybear.com.

https://firerestrictions.us
https://smokeybear.com
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and we use a randomized field experiment to identify the effects of social pressure via
home water reports (HWR).

Our primary research focus is on the automated enforcement of day-of-week and
time-of-day outdoor water use restrictions (hereafter DOWR). Irrigation restrictions
have a long heritage in water conservation and are widely used across California during
droughts.7 Although the social benefits from water conservation do not vary across
hours of the week, there are several institutional and horticultural reasons to impose
DOWR.8 Perhaps more importantly, restricting outdoor irrigation to specific days facil-
itates enforcement. Prior to the introduction of “smart” meters that record high-frequency
water consumption data using automated metering infrastructure (AMI), the only method
of detecting irrigation violations was visual inspection by a utility employee or an infor-
mant neighbor of the violator. While DOWR allow informants to focus only on the
extensive margin of “wrong day” water use, enforcement is believed to be quite low—
as we provide empirical support for below. BWP’s use of a computer algorithm to en-
force DOWR is highly novel, and ours is the first study to our knowledge to evaluate
automated enforcement of residential water policies.

On May 14, 2015, the Burbank City Council approved the implementation of tighter
restrictions, which included limiting outdoor water use to only on Tuesdays and Saturdays
before 9:00 a.m. and after 6:00 p.m.9 Notably, BWP initially enforced these DOWR
using only the conventional method of visual inspection. Then, during the first week
of July, the utility conducted a pilot test of a computer algorithm that uses AMI data
to automatically detect DOWR violations.Within 1 week, the share of single-family res-
idences that had ever been found in violation jumped from 4.6% to 39.5%—that is, more
than one-third of Burbank households were sent their first water violation notice in early
July, as shown in figure 1. These notices (shown in fig. A2) clearly indicate that the viola-
tions were detected by a computer algorithm, which had not been previously announced. In
addition, the notices reminded customers of the existing fines of $100 for irrigating more
often than twice per week, with fines increasing to $200 and then to $500 for subsequent
violations. The notices do not state whether automated enforcement would continue, and
BWPultimately used the algorithm only once, so this treatment is best interpreted as being
7. See California Water Resources Control Board’s Water Conservation Portal: Conserva-
tion Reporting, www.waterboards.ca.gov/water_issues/programs/conservation_portal/conser
vation_reporting.html.

8. DOWR generally prohibit irrigation between a few hours after sunrise and a few hours
before sunset, which minimizes water lost to evaporation (Christiansen 1942). Furthermore,
spacing out the days on which irrigation is allowed ensures that water can be spread efficiently
for the benefit of plants. Finally, outdoor water use constitutes a large share of municipal water
use and provides the potential to conserve water with minimal health and safety consequences
(California Department of Water Resources 2013).

9. These revised DOWR replaced existing outdoor water use limits in Burbank of 3 days
per week.

https://www.waterboards.ca.gov/water_issues/programs/conservation_portal/conservation_reporting.html
https://www.waterboards.ca.gov/water_issues/programs/conservation_portal/conservation_reporting.html
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a shock to household beliefs about detection and enforcement probabilities pertaining to
existing regulations and the associated pecuniary penalties.

To identify the effects of this novel enforcement, we use a regression discontinuity
design (RDD) based on a cutoff in the algorithm that the BWP employed to determine
violations. Using data from a single week in late June 2015, the noncompliance algo-
rithm estimated the number of days per week that each household was irrigating, defined
by whether the watermeter had flow ofmore than 125 gallons during any individual hour
of the day. For each household’s third-highest daily peak consumption hour, this arbitrary
cutoff of 125 gallons thus forms the basis of our regression discontinuity design. For ex-
ample, a household would be assigned to be sent an automated notice if their seven daily
peak hours were {200, 200, 125, 100, 100, 100, 100}, and a household would not be as-
signed to treatment if their seven daily peak hours were {200, 200, 124, 100, 100, 100,
100}. AlthoughHWRassignment is not a factor in the algorithm, BWPdecided to allow
for comparatively more detected irrigation days per week for both HWR treatment and
control accounts with “average” or “efficient” consumption, per the WaterSmart tier cat-
egorizations discussed below. Because we imperfectly observe households’ historical tiers
Figure 1. Time series for issued residential irrigation violation notices. This figure plots the
cumulative share of in-sample households that had ever received an irrigation violation notice by
week. Throughout this period, violations were determined when either a municipal employee or
a neighbor of the offender reported unlawful irrigation to the city. As indicated by the annota-
tion, the city also implemented an automated algorithmic detection of violations in early July.
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(particularly among the HWR control group), we assign all households to the running
variable based on the third-highest daily peak consumption hour, which would determine
violations under the strictest allowance. For this reason, we evaluate the automated en-
forcement using a “fuzzy” RDD.

We additionally evaluate the effects of HWR in Burbank during the same time pe-
riod, which provides points of comparison for both overall conservation effects as well as
more nuanced behavioral changes. Acting in partnership with BWP and the Center for
Water andEnergy Efficiency atUniversity of California,Davis ( Jessoe et al. 2019, 2021),
WaterSmart Software included nearly 17,000 single-family households in the random-
ized control study, with the timing of initial HWR treatment (by mail or email) rolled
out over the monthly water billing cycle during late April through mid-May 2015. No-
tably, treated households began to receive HWR at least 6 weeks prior to the automated
enforcement of irrigation restrictions in early July and continued to receive HWR for at
least several months—throughout the October end of the 2015 summer water season
that we include in our empirical analyses.

HWR include several components (see fig. A3). The primary component is a norma-
tive comparison of the treated household’s water consumptionwith that of a peer group of
neighboring households with the same number of occupants and similar irrigable area.10

The reports also provide treated households with some potentially water-saving sugges-
tions (e.g., “Upgrade to a low-flow toilet” or “Reduce showers to 5 minutes”). Some Bur-
bank HWR also included one of three randomly generated messages, two of which per-
tain to hot water use.11 Jessoe et al. (2019) find “that households did not respond to the
messaging or recommendations,” and we also verified that our estimated coefficients of
interest are the same for the pooled three arms as for the random subset receiving only
the core HWRmessaging. Broadly, the literature has determined that the social pressure
is by far the most effective component of HWR (and home energy reports) and that the
other components are largely ineffective in the absence of normative peer comparisons
(Ferraro et al. 2011; Ferraro and Price 2013; Mitchell and Chesnutt 2013; Allcott
and Rogers 2014; Brent et al. 2015, 2020; Jessoe et al. 2019, 2021; Bhanot 2021). We
10. HWR do not state the specific thresholds for the qualitative bins, but the “efficient” neigh-
bor benchmark is based on the 20th percentile of peer group consumption and the “average” bench-
mark is the 55th percentile. The reports also provide the gallons per day values corresponding to
each of these thresholds.

11. Thesemessages are: (i) “Surprised by yourWaterScore? YourWaterScore compares your use
to others in Burbank who also have X occupants and a similar yard size. Is your household different?
Log on to tune your profile and see adjusted comparisons.” (ii) “Reduce hot water use: Did you know
that heating water is the second most energy intensive activity in your home? Log on for information
and offers for the water, energy, and money saving actions below!” or (iii) “Save hot water, win big!
Reducewater use by 24% and gas use by 3% in the next 7months andwin one of: a) 25 high-efficiency
Whirlpool clothes washers, b) 100 luxurious, efficient Evolve shower heads, or c) A hot water effi-
ciency starter.”



Automated Enforcement of Irrigation Regulations West et al. 1187
cannot separately identify effects of each included piece of information, and we join prior
literature in viewing the overall HWR intervention as the relevant “treatment” from a
policy maker’s perspective.

Our research designs allow us to examine the impacts of automated enforcement and
social pressure within a given period across quasi-randomly and randomly assigned groups.
One consideration for this particular setting is the external validity of conclusions drawn at
the height of a severe drought in a drought-prone region. Both of these interventions were
introduced into a landscape filled with media coverage and other policies encouraging
water-saving behavior, and BWP was facing threats of state-mandated penalties tied
to conservation targets.12 Although these factors might bias our estimates toward finding
smaller effects, prior research supports that there is ample scope for residential water con-
servation, especially for outdoor water use (Castledine et al. 2014; Brelsford and Abbott
2018; Pratt 2019; Browne et al. 2020; Baker 2021). Moreover, as periods of extended
drought become increasingly common, it is important to study policies during such an
event in order to better understand the effects of related policies within the contexts in
which they will be invoked.

2. DATA

Our study primarily uses data sourced from automated metering infrastructure residen-
tial water meters, which provide high-frequency records of household water consump-
tion. The availability of hourly consumption data avoids the measurement error that
is typically present when trying to map metered water use to the actual timing of con-
sumption. For municipal utilities, one widely recognized benefit of AMI is the ability
to implement algorithmic detection of water leaks. In addition, the technology facilitates
automated detection of landscape irrigation, as we study. Single-family residential ac-
counts typically do not have separate meters for irrigation, so utilities (and researchers)
are generally unable to identify irrigation disaggregated from total household water use;
however, the flow rate of irrigation controllers is so large that consumption during an
hour with irrigation far exceeds regular household consumption during any other hour
of the week.13 Unlike with smart meters for electricity, AMI adoption has been relatively
rare for household water use historically, although deployment of the technology exhibits
a steep upward time trend.14 Thus, as water utilities increasingly install smart meters
throughout their jurisdictions, the scope for applying AMI technology to enforce water
policies will continue to grow steadily.
12. California enacted fines of $10,000 per day for water agencies that did not meet man-
dated conservation targets (www.mercurynews.com/2015/04/28/water-wasting-fines-of
-10000-proposed-by-gov-jerry-brown).

13. See an example comparison at www.wsscwater.com/customer-service/rates/water-usage.html.
14. In 2015, only about 7 million smart meters for water had been installed in the United

States, compared to about 68 million smart electricity meters (see www.westmonroepartners
.com/Insights/White-Papers/State-of-Advanced-Metering-Infrastructure).

https://www.mercurynews.com/2015/04/28/water-wasting-fines-of-10000-proposed-by-gov-jerry-brown
https://www.mercurynews.com/2015/04/28/water-wasting-fines-of-10000-proposed-by-gov-jerry-brown
https://www.wsscwater.com/customer-service/rates/water-usage.html
https://www.westmonroepartners.com/Insights/White-Papers/State-of-Advanced-Metering-Infrastructure
https://www.westmonroepartners.com/Insights/White-Papers/State-of-Advanced-Metering-Infrastructure
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BurbankWater and Power had installed AMI throughout their service area approx-
imately 1 year prior to implementing the interventions we study. WaterSmart Software
provided us with data on all single-family residential accounts within BWP’s service ter-
ritory in Burbank, California. The city of Burbank has a population of about 100,000 peo-
ple, but the Home Water Report program focused on single-family homes with some
irrigable landscape area. We observe hourly water consumption for nearly 17,000 single-
family households during April 2014 through October 2015. We collapse these hourly
data to the household-weekly level for our analysis, although we utilize the hourly dis-
aggregation to identify patterns of within-week intertemporal substitution and to provide
a deeper understanding of how and when households respond to the two water conser-
vation policies that we evaluate.

In addition to data onwater consumption, BWP andWaterSmart Software provided
us with data on all homewater reports and on violations of irrigation restrictions.We also
incorporate several household-level covariates into our analyses. These control terms
were compiled by WaterSmart Software through property records and inferred when
necessary from other house characteristics; the covariates included are the size and irri-
gable area of each residential lot, and each house’s size in square feet, year of construction,
number of floors, number of bedrooms, and number of bathrooms.

Table 1 presents summary statistics for these variables, as well as demonstrating bal-
ance between the HWR treatment and control groups. By design and as expected with
randomization across a large sample, implementation of the HWR treatment shows vir-
tually complete compliance and the two arms are highly balanced. Prior to the automated
enforcement pilot, roughly 5% of sample households had been sent a (nonautomated)
violation notice. During the year prior to the interventions (April 2014 through March
2015), average household water use was about 2,700 gallons per week. The full distribu-
tion of this water consumption is plotted by HWR arm in figure A4. As is typical of
household resource consumption, the distribution is skewed and has a long right tail;
the standard deviation is 1,645 gallons and the Pearson’s moment coefficient of skewness
is 2.55. For comparison, during our primary analysis period of lateMay throughOctober
2015, average water use by the control group was 2,323 gallons (SD 5 1,776).
3. EMPIRICAL SPECIFICATIONS AND RESULTS

This section presents our empirical findings. First, we evaluate the impacts of the viola-
tion notices onwater usage using a regression discontinuity design based on the computer
algorithm used to automate enforcement. We estimate treatment effects both during
hours when watering was allowed and during hours when irrigation was prohibited, as
well as for total household water consumption. Second, we assess the impact of social
pressure using the randomized home water reports field experiment. We estimate these
treatment effects both for total consumption and separately for watering-allowed/pro-
hibited hours. Finally, we examine the layering of the two policies by comparing estimates
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for theHWR intervention during weeks just before and just after the automated enforce-
ment of irrigation restrictions.

3.1. Regression Discontinuity Estimates for Automated Enforcement

To examine the effects of the automated violation notices on household water consump-
tion, we use a regression discontinuity design based on an arbitrary cutoff in the algorithm
used to determine irrigation violations (discussed in sec. 1). We do not attempt to dis-
entangle the mechanism(s) for these conservation effects, such as whether it is the pecu-
niary incentive from threat of fines or the increased perception of regulatory oversight by
the utility and city.We can only test the reduced-form impact of this policy as it was im-
plemented in Burbank—and as it could readily be deployed by other jurisdictions.

Before turning to the estimates, we conduct some standard exercises to support the va-
lidity of our RDD. First, we test for manipulation along the running variable, which mea-
sures the distance to the irrigation violation cutoff. Given that the automation of detecting
irrigation violations was unprecedented and unannounced, a priori there is no reason for
concern. As shown in figure A5, there is some measurement lumpiness from the underly-
ing meter technology, but there is no evidence of any asymmetric sorting of households
around the threshold, which visually confirms the results of our statistical implementation
Table 1. Summary Statistics and Randomization Balance Checks

Group Means t-Tests

Covariate
Control
(1)

HWR Treated
(2)

Difference
(3)

p-Value
(4)

Number of households 2,920 13,703
Sent WaterSmart HWR 0 .9972
Prior water violation .0486 .045 –.0036 .41
Lot size (sq ft) 7,346 7,322 –24 .74
Irrigable area (sq ft) 3,829 3,796 –33 .47
House size (sq ft) 1,619 1,620 1 .93
Year built 1,945 1,945 0 .86
Number of floors 1.061 1.067 .006 .27
Number of bedrooms 2.912 2.919 .007 .69
Number of bathrooms 1.929 1.939 .01 .59
Weekly water gallons 2,734 2,721 –13 .68
Note. This table shows statistics by WaterSmart home water reports (HWR) treatment arm for
household-level covariates. The first two columns show means by treatment arm for all households in the ran-
domization sample, col. 3 shows the difference in means, and col. 4 shows the p-values for t-tests of whether the
difference in group means is significantly different from zero. Initial HWR were sent to treated households
during the billing cycle spanning from mid-April through mid-May 2015. All outcomes in the lower panel
are determined prior to the randomization and prior to the automated irrigation restrictions enforcement.
For pretreatment weekly water consumption, we use each household’s average weekly gallons consumed during
April 2014 through March 2015, spanning a full year prior to both treatments.
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of McCrary’s (2008) test for manipulation. Further supporting the identification strategy,
figure A6 demonstrates that there is also smoothness across the threshold in pretreatment
water consumption along the running variable.

Next, we evaluate treatment compliance. Figure 2 displays the share of households
receiving automated violation notices along the running variable. For visual clarity, fig-
ures 2–4 use bins of 10 gallons for the running variable. The size of the markers corre-
sponds to the number of households included in each local average. Consistent with the
algorithm, zero households below the threshold received a violation notice; at the thresh-
old, there is a clear discontinuous jump for receipt of an automated violation notice in the
first week of July. Because of the heterogeneous intensity of treatment across the different
consumption tiers, as discussed earlier, the computer algorithm used by BWP resulted in
perfect compliance below the threshold but not above the cutoff.

Quantitatively, we estimate that households with peak hourly water consumption just
above the 125 gallon threshold are 25.5 percentage points more likely to have received a
violation notice from the water utility relative to households just below the threshold. In
Figure 2. Regression discontinuity design: first stage for automated violation notices. This figure
plots local averages for the first-stage outcome of whether a household received an automated irriga-
tion violation notice during the first week of July 2015. For clarity, the running variable uses 10-gallon
bins. The size of the markers corresponds to the number of households included in the local averages.
The LOESS curves shown are fit to the underlyingmicrodata separately on each side of the threshold.
Because the running variable represents a necessary but not sufficient condition for a household to be
sent an automated violation notice, the first stage supports a “fuzzy” regression discontinuity design.
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addition, because households that have higher peakwater consumption are more likely to
consume “above average” amounts of water per WaterSmart designation—and are thus
more likely to be assigned to treatment using the stricter allowance—the treatment pro-
pensity increases with the running variable.15 At the right end of the range displayed in
figure 2, we find that 40% of households received a notice, an increasing slope that con-
tinues past the displayed range. Thus, the running variable represents a necessary but not
sufficient condition for a household to be sent an automated violation notice, and this first
stage supports a fuzzy RDD.

Having established the validity of our first stage, we examine the effects of the auto-
mated enforcement onwater use.We start by plotting local averages of posttreatmentwater
consumption against the running variable. Figure 3 shows total average weekly water con-
sumption in gallons; figure 4a shows water consumption during targeted periods of the
week, when irrigation was not allowed; and figure 4b shows water consumption during
hours of the week when irrigation was allowed (Tuesday and Saturday before 9:00 a.m.
and after 6:00 p.m.). Average water consumption in these figures is pooled over July–
October 2015, the 4-month period immediately following the automated violation notices
treatment and continuing through the end of the statutory local summer water season.

Figure 4a shows a substantial discontinuous drop at the threshold in water consump-
tion during irrigation-restricted periods of the week. In reduced form, the discontinuity is
roughly 200 gallons per household per week, about 14.5% of the respective sample mean.
For water consumption during the entire week, in figure 3 we also find a large drop at the
threshold of about 8% in reduced form. This overall conservation is comparatively
smaller, consistent with possible intertemporal substitution in response to the enhanced
enforcement of an asymmetric restriction. Figure 4b reinforces evidence for such substi-
tution, showing that water consumption discontinuously increased during hours of the
week when irrigation was allowed.

We investigate these patterns more formally by estimating nonparametric local linear
regressions of the following form:

WaterUseit 5 β0 1 tAboveCutoff i 1 f (Peak Water Consumptioni) 1 εit: (1)

In equation (1),WaterUseit is the quantity of water consumed by household i in week t.
This outcome variable is either the household’s weekly total water consumption or the
total consumption during subsets of hours of the week, such as consumption during
irrigation-allowed hours only. In all regressions, each observation is one household for
1 week. AboveCutoffi is an indicator for whether the household’s water use is above
the cutoff in the algorithm used to determine irrigation violations (discussed in sec. 1).
The term f(Peak Water Consumptioni) is a nonparametric function of the household’s
15. As discussed in sec. 1, the algorithm uses “above average” households’ third-highest daily peak
hour during a specific week in late June 2015 but allows more leniency for lower-volume consumers.
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water use that entered into the algorithm and that is represented as the RDD running
variable. The term eit is a mean-zero idiosyncratic error term.

In addition to presenting reduced-form results using equation (1), we also estimate
local average treatment effects using nonparametric local linear regressions of the follow-
ing form:

WaterUseit 5 β0 1 tAutomatedViolationi1 f (Peak Water Consumptioni)1 εit: (2)

Here, AutomatedViolationi is an indicator for whether household i was sent an auto-
mated violation notice due to the enforcement algorithm. Leveraging the RDD frame-
work, we instrument for AutomatedViolationi using AboveCutoffi to obtain the LATE
estimates. Essentially, this rescales the estimates from equation (1) by the magnitude of
the first-stage discontinuity. We estimate all RDD specifications using techniques from
Calonico et al. (2014). With their provided statistical software package, we use local lin-
ear regressions with a triangular kernel.

Table 2 reports RD estimates of the effects of irrigation violation notices. Panel A
presents reduced-form estimates, and panel B presents the local average treatment
Figure 3. Reduced-form local averages for posttreatmentweeklywater consumption.This figure
plots local averages for weekly water consumption during July–October 2015, the period following
the automated violation notices treatment. For clarity, the running variable uses 10-gallon bins. The
size of the markers corresponds to the number of households included in the local averages. The
LOESS curves shown are fit to the underlying microdata separately on each side of the threshold.



Figure 4. Reduced-form for posttreatment weekly water consumption by hours of the week.
a, Consumption during hours of the week when irrigation is not allowed. b, Consumption during
hours of the week when irrigation is allowed. This figure plots local averages for weekly water con-
sumption during July–October 2015, the period following the automated violation notices treat-
ment. For clarity, the running variable uses 10-gallon bins. The size of the markers corresponds
to the number of households included in the local averages. The LOESS curves shown are fit to
the underlying microdata separately on each side of the threshold.
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effects, which essentially rescale the reduced-form estimates by the estimated magni-
tude of the first stage. Each cell in the table presents an RD estimate at the cutoff
for automated violation notices.We use a consistent bandwidth of 80 gallons and com-
pute heteroskedasticity-robust bias-corrected standard errors using the approach pro-
vided by Calonico et al. (2014).16

In panel A, we present the reduced-form estimates that correspond to figures 3 and 4.
Column3 shows estimates forwater consumption during irrigation-prohibited hours of the
week. We find a statistically significant drop of 192.6 gallons per week at the threshold.
Some of this decrease in water consumption, however, is offset by an increase in water
consumption during nonrestricted periods within the week. Column 4 shows that water
Table 2. Regression Discontinuity Estimates of Effects of Irrigation Violation Notice

Weekly Water Consumption:
July–October 2015 (Gallons)

First Stage
(1)

All Hours
(2)

Nonirrig. Hours
(3)

Irrig. Hours.
(4)

A. Reduced-form estimates:
Discontinuity .2549*** –144.2*** –192.6*** 48.4***

(.0068) (26.1) (21.42) (10.67)
B. Local average treatment effects:

Discontinuity –565.9*** –755.8*** 189.9***
(106.5) (89.53) (41.29)

Sample mean .15 1,833 1,334 499
Bandwidth (gal) 80 80 80 80
Observations 111,211 111,211 111,211 111,211
16. Estimates are quantitatively a
bandwidths.
nd qualitativ
ely similar w
hen using data-dri
Note. Each cell presents a nonparametric regression discontinuity estimate at the cutoff for automated vi-
olation notices. All regressions use the “rdrobust” software package developed and provided by Calonico et al.
(2014). Heteroskedasticity-robust bias-corrected standard errors are estimated using the same package. Col-
umn 1 provides the estimated first stage for automated violation notices. These notices were sent to households
during the first week of July 2015. Columns 2–4 present estimates for household weekly water consumption
during July throughOctober 2015, the remainder of the legal and technical local summerwater season following
the violation notices. Panel A shows the reduced-form estimates, and panel B shows the estimated local average
treatment effects. Column2 includeswater consumption pooled across all hours of the week. Column 3 includes
consumption only during hours of the week when irrigation was not legally allowed. Column 4 includes con-
sumption only during hours irrigation was legally allowed: Tuesdays and Saturdays before 9:00 a.m. or after
6:00 p.m.

* p < .1.
** p < .05.
*** p < .01.
ven “optimal”

https://sites.google.com/site/rdpackages/rdrobust
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consumption increased discontinuously at the treatment threshold on average by 48.4 gal-
lons per week during the irrigation-allowed hours on Tuesdays and Saturdays before
9:00 a.m. or after 6:00 p.m. Thus, the violation notices partly shifted water consumption
from irrigation-restricted times to irrigation-allowed times, showing intertemporal sub-
stitution in response to a policy with (intentionally) partial coverage. Focusing on total
weekly water conservation in column 2, we also find significant effects at the threshold,
with total water consumption decreasing in reduced form by 144.2 gallons per week.

As displayed in figure 2, household receipt of violation notices increases substantially
at the threshold. Confirming this visible discontinuous jump, nonparametric RD esti-
mates indicate an increase of 25.5% at the cutoff for automated violation notices. The
estimate is reported in the first column of panel A in table 2. Given that only one out
of four “barely eligible” households received the violation notice, it is useful to rescale
the RD estimates so that they can be interpreted as the effect of receiving a violation
notice instead of as a reduced-form estimate of the effects of crossing the arbitrary
threshold.

Panel B of table 2 reports RD estimates for local average treatment effects of receiving
a violation notice. As expected, the LATE estimates are roughly four times larger than
the reduced-form estimates. The effect of receiving a violation notice is to reduce post-
notice water consumption by 755.8 gallons per week during irrigation-restricted times
of the week. In contrast, water use during irrigation-allowed portions of the week in-
creases by 189.9 gallons per week. Finally, total weekly water use decreases by 565.9 gal-
lons per week on average for households sent a violation notice. To place this into per-
spective, these estimates imply that automated enforcement decreases household water
use by about 31% on average, a very economically significant effect.17

In table 3, we show that these conservation effects persist throughout (at least) the
2015 summerwater season.The table presents reduced-form and local average treatment
effect estimates for household weekly water use by month during July, August, Septem-
ber, and October. While the estimates fluctuate somewhat—as is expected of data on a
highly variable outcome—there is compelling evidence that estimated impacts of the vi-
olation notices persist for months after the one-time use of automated enforcement.18

While the largest point estimate is for July, a LATE of 641.3 gallons per week, the
estimated LATE remains at 526.2 gallons in October. Moreover, the estimates for July
17. Our estimates for automated enforcement of irrigation policies are substantially larger
than those for conventionally enforced DOWR (e.g., Hayden and Tsvetanov 2019). In percent-
age terms, we find water conservation on par with that from subsidizing “Water Smart Land-
scape” conversion (e.g., Brelsford and Abbott 2018; Baker 2021) or increasing marginal water
prices by about 150% (Browne et al. 2020).

18. While we have no data on specific household behavioral changes, these findings are con-
sistent with an induced change in irrigation controller settings. Given that (counterfactual)
households clearly were not making similar changes absent the notifications, this potential ex-
planation is interesting in its own right.
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throughOctober form a rather tight range between 437.5 and 641.3 gallons per week. As
shown in table A1 (tables A1–A4 are available online), the treatment effects appear to
persist even through the summer of 2016.

On the whole, these results for the effects of automated enforcement of irrigation
restrictions are both academically interesting and directly policy relevant. Following a
one-time application of automated enforcement, it is clear that households respond
by significantly altering consumption patterns.While the aggregate impact on consump-
tion is the most consequential for addressing water shortages, it is also valuable to un-
derstand how these reductions are achieved, including the evidence of within-week
intertemporal substitution.

3.2. Estimated Effects of the Randomized Home Water Reports

Wenext examine how social pressure affects water conservation. Our identification strat-
egy uses a field experiment in which randomly selected households were providedHWR
including normative social comparisons of water use. Building on previous work by Jessoe
et al. (2019, 2021) that explores the overall effect of the intervention, we primarily focus
on time periods corresponding to features of the automated enforcement of irrigation
policy. Of novel interest, we explore the sensitivity of HWR to the sharp change in en-
forcement by estimating treatment effects in the weeks just before versus after the auto-
mated irrigation violation notices.

Figure 5 displays average household weekly water consumption by month for both
the treatment group that received HWR and the control group that did not. The time
range shown in the figure spans one full year from November 2014 to October 2015,
consisting of three distinct policy regimes. From November 2014 through March 2015
Table 3. RD Estimates of Effects of Irrigation Violation Notice by Month

Weekly Water Consumption in 2015 (Gallons)

Reduced Form LATE
Sample
MeanTime Period Coefficient SE Coefficient SE Observations Bandwidth

July –163.0*** (48.99) –641.3*** (202.4) 31,385 80 1,890
August –111.0* (57.58) –437.5* (233.3) 24,735 80 2,006
September –159.0*** (49.99) –625.2*** (205.0) 30,695 80 1,793
October –135.7*** (51.07) –526.2** (206.4) 24,396 80 1,635
Note. Each row presents nonparametric regression discontinuity estimates at the cutoff for automated
violation notices. The outcome variable is total weekly water consumption. The month for each week is
defined based on which month the first day of the week falls within. All regressions use the “rdrobust” soft-
ware package developed and provided by Calonico et al. (2014). Heteroskedasticity-robust bias-corrected
standard errors are estimated using the same package.

* p < .1.
** p < .05.
*** p < .01.

https://sites.google.com/site/rdpackages/rdrobust
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is a “pretreatments” regime when neither HWR nor automated enforcement were in ef-
fect. HWR-treated households were sent initial social comparisons duringApril through
May 2015, and the “HWR only” regime runs from April through June. Then, the auto-
mated enforcement was conducted in the first week of July; the “HWR plus automated
violations” regime runs from July through October, concluding the 2015 summer water
season. In the pretreatments period, there is clearly no difference between the treatment
and control groups, which were defined randomly. As initial HWR were sent in April
and May, the AMI data enable us to see treatment effects immediately: average water
use is visibly lower forHWR-treated households compared to the control group for every
month over the experimental period.19 Finally, themagnitude ofHWR treatment-control
Figure 5. Average weekly water consumption byWaterSmart arm across the three regimes. This
figure plots average weekly residential water consumption bymonth for eachWaterSmart homewater
reports treatment arm during November 2014 through October 2015. The dashed vertical lines indi-
cate the three regimes of policy interventions. HWRwere sent to households starting with the April–
May 2015 billing cycle and throughout the end of 2015 (and later). Algorithmic automated notices for
violations of irrigation restrictions were sent to households during the first week of July 2015.
19. The immediacy of the treatment effect is consistent with Reiss andWhite (2008), who find
that electricity consumers respond promptly to both price changes and normative appeals. These find-
ings support our use of May–June as a counterfactual for HWR effects during the “HWR plus au-
tomated violations” regime.
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differences appears to remain strikingly similar in the third regime following the auto-
mated enforcement of irrigation restrictions.

We investigate the effects of HWR on water use more formally by estimating re-
gression specifications of the following form:

WaterUseit 5 β0 1 gHWRit 1 mi 1 qt 1 dX0
i 1 εit: (3)

As in section 3.1, WaterUseit is the quantity of water consumed by household i in
week t. The termHWRit indicates whether the household had been randomly assigned
to be sent a home water report(s). The term Xt is a vector of household control terms,
including residential lot size, irrigable area, and the home’s square footage, year of con-
struction, number of floors, number of bedrooms, and number of bathrooms. The terms
mi and qt are fixed effects for each household and week of the sample, respectively. The
term eit is a mean-zero idiosyncratic error term.

Column 1 of table 4 uses a univariate ordinary least squares (OLS) regression of
household weekly water consumption on assignment to treatment during the posttreat-
ment period from lateMay throughOctober. In column 2, we augment this specification
with a vector of baseline controls for residential lot size, irrigable area, and the home’s
Table 4. Estimated Effects of Randomized WaterSmart Home Water Reports

Weekly Water Consumption in 2015 (Gallons)

Late May–October

(1) (2)
January–October

(3)

I{HWR} –77.88*** –77.67*** –68.76***
(28.38) (25.62) (17.44)

Household controls No Yes . . .
Household fixed effects No No Yes
Week of sample fixed effects No No Yes
Control group mean 2,323 2,323 2,217
Number of households 16,623 16,623 16,623
Observations 391,552 391,552 706,882
Note. This table presents estimates of the average intent-to-treat effect of the randomized WaterSmart
HWR for weekly water consumption during 2015 for the month ranges indicated by the column titles.
Home water report–treated households each had been sent one HWR as of late May 2015, and monthly
reports continued to be sent throughout (and following) October, the end of the legal and technical local
summer water season. The household control terms in col. 2 include residential lot size, irrigable area, and
the home’s square footage, year of construction, number of floors, number of bedrooms, and number of
bathrooms. Standard errors in parentheses are two-way clustered by household and week.

* p < .1.
** p < .05.
*** p < .01.
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square footage, year of construction, number of floors, number of bedrooms, and number
of bathrooms. We also estimate a difference-in-differences specification in column 3 by
adding preperiod data from January through lateMay of 2015, including household fixed
effects, week of sample fixed effects, and interacting the assignment to treatment term
with a binary indicator for post-HWR implementation. For each regression, standard
errors in parentheses are two-way clustered by household and week.20

Across the specifications, we find an average intent-to-treat effect of HWR of about
70–80 gallons per household per week. Using the control group sample averages (in the
lower portion of table 4), the point estimates correspond to an average reduction in water
consumption of 3.1%–3.4%, with a 95% confidence interval spanning 1.0%–5.7%.21This
finding essentially replicates that of Jessoe et al. (2019, 2021), using the same field exper-
iment but slightly different measures. Our results also closely align with evidence on
HWR in other jurisdictions (Ferraro et al. 2011; Ferraro and Price 2013; Mitchell and
Chesnutt 2013; Bernedo et al. 2014; Brent et al. 2015, 2020; Bhanot 2021). Whereas
the conservation benefits of HWR are qualitatively well documented, our study provides
a novel point of comparison: we show that automated enforcement of irrigation restric-
tions has effects on water consumption that are about 10 times as large as those of HWR
(31% vs. 3%).

Building on these existing results of the social pressure field experiment, we next explore
how simultaneously using both HWR and automated enforcement policies affects house-
hold water conservation. We explore the layering of the policies in two ways. First, we ex-
amine howwater conservation changes as automated enforcement is layered onto the social
comparison policy over time. Second, we focus on how layering the policies changes water
conservation by days of the week, that is, when outdoor irrigation is allowed or not allowed.22

As discussed just above in the context of figure 5, the HWR posttreatment period
consists of two regimes. During the 6 weeks from late May through June of 2015, the
statutory summer watering season under irrigation restrictions was in effect, but it was
prior to automation of the associated regulatory enforcement. Then, during July through
October, the statutory summer watering season under irrigation restrictions remained in
effect, but automated violation notices had been abruptly issued to more than one-third
20. As our study period includes a fairly small number of weeks, we verified that standard
errors are very similar when clustering only by household.

21. If, instead of calculating the percentage treatment effect relative to the randomly assigned
control group, we compute it using pretreatment consumption for the treated (from table 1),
these estimates represent a change of 2.9%.

22. In principle, we could test for policy interactions by evaluating the difference in discontinuities
across theHWRtreatment and control arms. In practice, such an exercise is statically underpowered as
there are too few households near the RD cutoff, particularly among the much smaller control group.
We present results in table A2 for the regression discontinuity estimates using only the sample of
HWR-treated households, showing a very similar pattern as that shown for all households in table 2.
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of households (as shown in fig. 1). We show above that this automated enforcement
reduced average household water consumption by about 31% per week. Thus, there
was a sharp change in the enforcement regime while other aspects of the setting and
HWRexperiment remained unchanged.23 Empirically, we explore potential policy inter-
actions and behavioral changes by estimating the effects of randomized HWR on post-
treatment water consumption separately for different periods of time.

In table 5, we report these regression estimates. Column 1 includes our full HWR
time period of late May through October, directly repeating table 4’s column 2 for con-
venience. For this full posttreatment period, we find an intent-to-treat estimate from so-
cial pressure of 78 gallons per week reduction in water use per treated household. The
remaining columns of table 5 maintain this same specification but vary the included time
periods. In column 2, we estimate an average reduction of 79 gallons per household-week
during late May through June, prior to the automated enforcement. In column 3, we es-
timate a conservation effect of 78 gallons per week during July through October, follow-
ing the use of automated enforcement.24 The comparison of these treatment estimates
reveals that they are virtually identical, providing suggestive evidence that the policies
may be fully additive.25 The finding also provides some suggestive evidence on the inter-
actions between mechanisms. Twomechanisms through whichHWR theoretically might
affect water conservation are by increasing responsiveness to intrinsic incentives (e.g.,
moral costs) and by reducing responsiveness to extrinsic incentives (e.g., financial costs)
via substitution effects. Concerns about the behavioral response to intrinsic incentives be-
ing sensitive to the strength of extrinsic incentives have been conjectured in the broader
economics literature (e.g., Bénabou and Tirole 2006; Gneezy et al. 2011; Pellerano et al.
2017), but we do not find evidence of a strong interaction between the two interventions
in this setting.

The remaining two columns of table 5 explore the effects ofHWR for different times
within the week during the postautomation regime. Specifically, column 4 includes only
23. Following plans to the tariff structure announced years in advance, water prices changed
once near the beginning of our study period on June 2, 2015. The price change was a relatively
small increase of 5.2 cents per hundred cubic feet (about 748 gallons) for the first consumption
tier, with slightly larger increases on higher tiers. The median May water bill of 8,550 gallons
would have increased by only $1.59, inclusive of a $1.00 increase to the fixed service charge.
There were no additional changes during our study period.

24. As discussed above, the irrigation policy did not change at this time—only the approach
to enforcement.

25. In table A3, we show that these results remain unchanged when adding additional con-
trols for weather (temperature and precipitation) and to adding week-of-sample fixed effects. A
formal test of the difference across time periods yields a point estimate of essentially zero. The
standard error is small enough to rule out interactions of larger than a 25 gallons per week re-
duction or increase, about one-third of the average treatment effect of the HWR.



Automated Enforcement of Irrigation Regulations West et al. 1201
hours of the week when irrigation was prohibited, and column 5 includes only hours
when outdoor irrigation was allowed. We find that HWR reduce average water use by
40 gallons per week during irrigation-prohibited time periods and by 38 gallons per week
during irrigation-allowed time periods. This ubiquity of HWR effects with respect to ir-
rigation permission starkly contrasts the intertemporal substitution shown earlier for the
automated enforcement. Even though automated enforcement of irrigation regulations
has large conservation effects during irrigation-prohibited periods, it also shifts some water
use to nonrestricted days of the week; in contrast, social pressure has a blanketed effect of
reducing water use regardless of irrigation restrictions. These results provide further evi-
dence suggesting that social pressure works independently of automated enforcement pol-
icies for water conservation.

We bolster this evidence by focusing on high-volume water consumers, of which the
vast majority (70%) were sent an automated violation notice. Table 6 reports estimates
for the same outcomes as in table 5 but uses the subset of householdswhohad pretreatment
Table 5. Estimated Effects of Randomized WaterSmart HomeWater Reports by Time Period

Weekly Water Consumption in 2015 (Gallons)

Late May–October Late May–June
July–October

All Hours
(1)

All Hours
(2)

All Hours
(3)

Nonirrig.
(4)

Irrig.
(5)

I{HWR} –77.67*** –78.80*** –77.51*** –39.71** –37.79**
(25.62) (28.96) (25.57) (18.31) (15.28)

Household controls Yes Yes Yes Yes Yes
Control group mean 2,323 2,442 2,283 1,414 869
Number of households 16,623 16,623 16,623 16,623 16,623
Observations 391,552 99,477 292,075 292,075 292,075
Note. This table presents estimates of the average intent-to-treat effect of the randomized WaterSmart
HWR for weekly water consumption during 2015 for the time periods indicated by the column titles. Spe-
cifically, col. 1 includes the full 2015 summer treatment period from late May through October; col. 2 in-
cludes only late May through June, before the automated violation notices were sent; and cols. 3–5 includes
July through October, after the automated violation notices were sent. Column 4 includes consumption only
during hours of the week when irrigation was not legally allowed. Column 5 includes consumption only
during hours irrigation was legally allowed: Tuesdays and Saturdays before 9:00 a.m. or after 6:00 p.m.
Home water report–treated households each had been sent one HWR as of late May 2015, and monthly
reports continued to be sent throughout (and following) October, the end of the legal and technical local
summer water season. The household control terms include residential lot size, irrigable area, and the
home’s square footage, year of construction, number of floors, number of bedrooms, and number of bath-
rooms. Standard errors in parentheses are two-way clustered by household and week.

* p < .1.
** p < .05.
*** p < .01.
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water consumption in the top tercile of weekly volume. Of note, 70% of these households
were sent an automated violation notice during the first week of July. For these high-
volume consumers, we find even larger and more significant conservation effects from
HWR. In column 1, we estimate an average intent-to-treat reduction of 164 gallons
per week for the full time period (4.8% of the mean). Focusing on time periods before
and after the automated enforcement intervention, we find similar levels of water conser-
vation: 163 and 165 gallons, respectively.We also find similar levels of water conservation
fromHWRduring irrigation-prohibited hours (80 gallons per week) as during irrigation-
allowed hours (85 gallons per week).

Finally, we show results in table 7 in two panels separately for late May through June
and for July through October (2015), across four time blocks within the week: (1) non-
irrigation days between 0:00–9:00 and 18:00–24:00, (2) nonirrigation days between 9:00
and 18:00, (3) irrigation days (Tuesday and Saturday) between 0:00–9:00 and 18:00–
24:00, and (4) irrigation days between 9:00 and 18:00. This decomposition allows us
to compare the impact of HWR on water use for the same set of hours on days when
irrigation is permitted and when irrigation is prohibited. The two panels of the table
Table 6. Estimated Effects of HWR by Time Period for High-Volume Consumers

Weekly Water Consumption in 2015 (Gallons)

Late May–October Late May–June
July–October

All Hours
(1)

All Hours
(2)

All Hours
(3)

Nonirrig.
(4)

Irrig.
(5)

I{HWR} –163.97*** –162.45*** –164.79*** –79.68** –85.11***
(48.93) (54.97) (49.93) (40.20) (32.15)

Household controls Yes Yes Yes Yes Yes
Control group mean 3,572 3,832 3,483 2,060 1,423
Number of households 5,536 5,536 5,536 5,536 5,536
Observations 130,414 33,122 97,292 97,292 97,292
Note. This table replicates the specifications in table 5 for the subsample of households that had pretreat-
ment water consumption in the top tercile of weekly volume. Of these households, 70% were sent an auto-
mated violation notice in early July 2015. Specifically, col. 1 includes the full 2015 summer treatment period
from late May through October; col. 2 includes only late May through June, before the automated violation
notices were sent; and cols. 3–5 includes July throughOctober, after the automated violation notices were sent.
Column 4 includes consumption only during hours of the week when irrigation was not legally allowed. Col-
umn 5 includes consumption only during hours irrigation was legally allowed: Tuesdays and Saturdays before
9:00 a.m. or after 6:00 p.m. The household control terms include residential lot size, irrigable area, and the
home’s square footage, year of construction, number of floors, number of bedrooms, and number of bathrooms.
Standard errors in parentheses are two-way clustered by household and week.

* p < .1.
** p < .05.
*** p < .01.
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facilitatemaking this comparison before versus after the automated irrigation enforcement.26

Qualitatively, the evidence in table 7 shows that HWR treatment effects are concentrated
more heavily on nonirrigation days prior to the automated enforcement, and then the
Table 7. Estimated Effects of Randomized WaterSmart Home Water Reports by Time Block

Weekly Water Consumption in 2015 (Gallons)

Non–Tuesday and Saturday Tuesday and Saturday

0:00–9:00/
18:00–24:00

(1)
9:00–18:00

(2)

0:00–9:00/
18:00–24:00

(3)
9:00–18:00

(4)

A. Late May–June:
I{HWR} –33.97** –19.88** –17.33 –7.41*

(15.43) (8.60) (12.30) (4.40)
B. July–October:

I{HWR} –19.06 –12.31** –36.74** –7.03*
(11.76) (5.96) (15.10) (3.63)

Household controls Yes Yes Yes Yes
Panel A control mean 1,001 499 699 245
Panel B control mean 744 425 855 218
Number of households 16,623 16,623 16,623 16,623
Panel A observations 99,417 99,417 99,349 99,349
Panel B observations 291,855 291,855 291,496 291,496
26. Table A4 further dis
shows that, while the conserv
time periods, the social press
aggregates these estimates across 21 ti
ation from HWR is especially pronoun
ure reduces water use across the hours
me blocks within t
ced during irrigatio
of the week.
Note. This table presents estimates of the average intent-to-treat effect of the randomized WaterSmart
HWRforweeklywater consumption during 2015 for the time blocks within eachweek indicated by the column
titles. Specifically, col. 1 includes the hours from midnight to 9:00 and 18:00 to midnight on days other than
Tuesday and Saturday. Column 2 includes hours from 9:00–18:00 on days other than Tuesday and Saturday.
Column 3 includes the hours from midnight to 9:00 and 18:00 to midnight on Tuesday and Saturday. Column 4
includes hours from 9:00–18:00 on Tuesday and Saturday. Panel A shows estimates for the period that in-
cludes only late May through June, and panel B shows estimates for the period that includes only July through
October, after the automated violation notices were sent. Throughout the entire late May through October
period, irrigation was allowed only on Tuesdays and Saturdays before 9:00 or after 18:00, i.e., in the hours
for col. 3 only. Home water report–treated households each had been sent one HWR as of late May 2015,
andmonthly reports continued to be sent throughout (and following)October, the end of the legal and technical
local summer water season. The household control terms include residential lot size, irrigable area, and the
home’s square footage, year of construction, number of floors, number of bedrooms, and number of bathrooms.
Standard errors in parentheses are two-way clustered by household and week.

* p < .1.
** p < .05.
*** p < .01.
he week and
n-permitted
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treatment effectsmoderately shift to occur during irrigation-allowed periods following the
automated enforcement. This shift is reflected in the statistical (in)significance of the re-
spective coefficients but is not itself a statistically significant shift in the composition of treat-
ment effect timing. Overall, this new table supports that HWR appear to largely operate
through a different behavior channel than that of the automated irrigation enforcement,
especially as the HWR effects remain stable during nonirrigation hours (9:00–18:00) of
all days of the week across the two regimes.

On the whole, these findings do not show any evidence of a significant change in
HWR effects from layering the two interventions, and the estimates reported in tables 6
and 7 serve as a strong further robustness check for additive effects of the two policies.
We caveat, however, that these evaluations are comparisons of behavior by the same peo-
ple at different points in time; while total precipitation was very minimal during the pe-
riods we study, there might be seasonality or other time-varying factors determining the
response to HWR treatment. Thus, we view our evidence as only being suggestive that
the effectiveness of social pressure does not appear to vary with the strength of enforce-
ment for regulations targeting the same or similar behaviors.

4. CONCLUSIONS

In this study, we examine both the impacts of automating the enforcement of day-of-
week and time-specific irrigation regulations and of social pressure for water conservation
via home water reports. Using hourly data on household water consumption for a city in
Southern California, we estimate how these two policy interventions affect residential
water usage during an extreme drought.

Using a regression discontinuity design based on the irrigation detection algorithm, we
find that automating the enforcement of existing irrigation policies reduces average water
consumption by approximately 31% among targeted households. In comparison, we find
using a randomized field experiment that the social pressure reduces average water use
by about 3%, replicating the findings of Jessoe et al. (2019, 2021). Extrapolating the RD
estimates to apply to all treated households, this implies that the total water conservation
effects of automated enforcement of irrigation restrictions are about 10-fold those of home
water reports on a per-treated-household basis. Exploring how these respective effects vary
across the hours of the week, we show that the automated enforcement induces inter-
temporal substitution from irrigation-prohibited to unregulated periods within the week;
in contrast, we find that home water reports cause conservation during all hours of the
week, both before and following the application of automated irrigation policy enforcement.

Although irrigation regulations and social pressure have both been studied extensively
in the resource conservation literature, our study presents novel findings about the auto-
mation of associated enforcement and the efficacy of these two policies when imple-
mented contemporaneously. Given the sparsity of existing literature studying automated
enforcement of public policies, our research demonstrates promising potential for
technology-enforced regulations to dramatically change consumer behaviors. While
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the city we study used automated enforcement only once, we find that the conservation
effects persist in magnitude for the duration of the summer water season and underlying
irrigation policy period. Moreover, rather than the layering of multiple policies having
diminishing marginal returns, these two interventions appear to yield fully additive con-
servation effects: home water reports successfully encouraged conservation both during
time periods when irrigationwas allowed andwhen irrigationwas not allowed, to a similar
extent both before and after the application of automated irrigation policy enforcement.

Our findings speak to a challenging trade-off faced by utilities and public policy makers.
Automated enforcement of regulations produces meaningful resource conservation in this
setting, but efficacy is only one consideration. Technology-driven enforcement is imperfect
and somewhat invasive, which incurs complaints from offended utility customers.27 There
is also a potential concern that strengthened enforcement of regulations might reduce peo-
ple’s intrinsic motivation to conserve resources. The evidence from our study suggests that
this potential displacement is minimal in practice, perhaps because irrigation policy and so-
cial pressure may work through different behavioral channels. As the technological scope
for automated enforcement of policies continues to rapidly grow, the potential lack of pop-
ular support will need to be carefully balanced against the large potential social benefits from
resource conservation and other behavioral changes. Our study shows that these policy-
making trade-offs can reasonably be considered independently of existing or proposed social
pressure interventions.
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